Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) IN THE OPEN OCEAN: OPTICAL AND CHEMICAL PROPERTIES AND THEIR RELATION TO CDOM STRUCTURE AND SOURCES.

    Thumbnail
    View/Open
    Cartisano_umd_0117E_20331.pdf (19.89Mb)
    No. of downloads: 64

    Date
    2019
    Author
    Cartisano, Carmen Marie
    Advisor
    Blough, Neil V
    DRUM DOI
    https://doi.org/10.13016/ei0l-ujdu
    Metadata
    Show full item record
    Abstract
    The carbon contained as dissolved organic matter (DOM) in the Earth’s oceans is an important factor in the global carbon cycle, but studying and tracking DOM in the aquatic environment can be challenging. However, the light-absorbing and emitting subcomponents of DOM, called chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) can be directly probed using absorption and fluorescence spectroscopy, respectively. Detailed studies on CDOM from the open oceans are limited with many of the existing studies having very limited data sets (only select wavelengths or indices). To address this, the optical properties of CDOM from a variety of geographic locations (North Pacific Ocean: NPO, Equatorial Atlantic Ocean: EAO, Middle Atlantic Bight: MAB, Delaware River and Delaware Bay) were compared, and chemical tests performed (sodium borohydride (NaBH4) reductions and pH titrations). The responses to the chemical tests along with similarities and differences in the optical properties were examined to compare the structures present in terrestrial, coastal and open ocean samples. A long-pathlength capillary waveguide spectrometer was used to characterize open ocean CDOM samples, with the need for a calibration and validated protocol addressed prior to use. The optical properties of the NPO samples did not vary significantly at depths from ~300-4500 meters with only the surface samples showing significant differences. Solid phase extraction of the natural waters did remove unique absorbing and emitting bands in the UV region that could be marine in origin, while enriching the “humic-like” fraction. The open ocean samples showed similarities to the coastal and riverine samples including: 1) monotonically decreasing and unstructured absorbance with increasing wavelength; 2) loss of absorption upon NaBH4 reduction at all wavelength, with the largest percent loss in the visible; 3) enhanced absorption with increasing pH with spectral changes that occurred over the same pH ranges as the pKas of carboxylic acids and phenols; 4) attenuation of absorption enhancement with increasing pH following reduction at most wavelengths. These similarities not only suggest that there are structural similarities throughout all samples, but also indicate that there may be a terrestrial source of CDOM in the open ocean.
    URI
    http://hdl.handle.net/1903/25372
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility