Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    STUDY ON-CHIP METAL-INSULATOR-SEMICONDUCTOR-METAL INTERCONNECTS WITH THE ALTERNATING-DIRECTION-IMPLICIT FINITE-DIFFERENCE TIME-DOMAIN METHOD

    Thumbnail
    View/Open
    umi-umd-2386.pdf (1.440Mb)
    No. of downloads: 1546

    Date
    2005-04-29
    Author
    Yang, Bo
    Advisor
    Goldsman, Neil
    Metadata
    Show full item record
    Abstract
    The Alternating-Direction-Implicit Finite-Difference Time-Domain method is used to analyze the on-chip Metal-Insulator-Semiconductor-Metal interconnects by solving Maxwell's equations in time domain. This method is efficient in solving problems with fine geometries much smaller than the shortest wavelength of interest. The iteration algorithm is evaluated thoroughly with respects to stability, numerical dispersion, grid size, time-step size etc.. The dielectric quasi-TEM mode, the slow wave mode, and the skin-effect mode of the MISM structure are all analyzed. We find that semiconductors can readily operate from the slow wave mode, to the transition region, to the skin effect mode in state of art technology. This thesis shows that the silicon substrate losses and the metal line losses can be modeled with high resolution. Signal dispersion and attenuation over a wide range of doping densities and operating frequencies is discussed. Accurate prediction of interconnect losses is critical for high-frequency design with highly constrained timing requirements.
    URI
    http://hdl.handle.net/1903/2506
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility