Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Origin of the anomalous sulfur isotope composition of the Rustenburg Layered Suite (Bushveld Complex), South Africa

    Thumbnail
    View/Open
    deAssisMagalhaes_umd_0117E_19729.pdf (23.63Mb)
    No. of downloads: 71

    Date
    2019
    Author
    de Assis Magalhaes, Nivea Maria
    Advisor
    Penniston-Dorland, Sarah C
    Farquhar, James
    DRUM DOI
    https://doi.org/10.13016/lqtk-nci9
    Metadata
    Show full item record
    Abstract
    The 2.06 Ga Bushveld Magmatic Province (BMP) hosts the largest platinum group element (PGE) reserve of the world that occurs mainly as sulfide-rich layers within the Rustenburg Layered Suite (RLS), and also in mineralized layers of the Waterberg Project (WP). Despite extensive studies, many questions remain on the origin and evolution of this large igneous province, and on the source of sulfur that allowed for the extensive PGE mineralization. This study looks systematically into the multiple sulfur isotope composition of the RLS, finding that all layers show the presence of a mass-independently fractionated sulfur component (Δ33S≠0), which are all distinguishable from the expected Δ33S value of the mantle. The exogenic sulfur reflects contamination by Archean surface-derived material (e.g. sediments, altered oceanic crust). Such contamination can occur in many different stages of the evolution of these intrusions: either by assimilation of wall rock during ascent and emplacement, or in a staging chamber in the lower crust, or by recycling of crustal material in an ancient subduction zone. The WP, an intrusion related to the BMP that was emplaced off-craton, has a similar sulfur composition to the Main Bushveld Series of the RLS. It is, however, a separate intrusion that crystallized in a separate magma chamber and was emplaced in a different unit than the RLS, which suggests that the contamination of the parental magma occurred at a deeper level, prior to emplacement of magma in the upper crust. Rocks from the Vredefort Dome, used as a proxy for the sulfur composition of the lower crust underneath that region, yield a sulfur composition that cannot account for the composition of the RLS or the WP. Finally, the sub-continental lithospheric mantle has been studied through xenoliths carried by the Premier Kimberlite. These xenoliths, such as what was observed in sulfide inclusions in diamond, also have Δ33S≠0, evidencing that the sub-continental lithospheric mantle may contain recycled sulfur that contributed this sulfur to primitive magmas during the Bushveld magmatic event.
    URI
    http://hdl.handle.net/1903/22095
    Collections
    • Geology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility