University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Variable Qubit-Qubit Coupling Via a Tunable LC Resonator

    Thumbnail
    View/Open
    Ballard_umd_0117E_19487.pdf (57.85Mb)
    No. of downloads: 30

    Date
    2018
    Author
    Ballard, Cody James
    Advisor
    Wellstood, Frederick C.
    Lobb, Christopher J.
    DRUM DOI
    https://doi.org/10.13016/zsk8-ol6u
    Metadata
    Show full item record
    Abstract
    This dissertation examines the design, fabrication, and characterization of a superconducting lumped-element tunable LC resonator that is used to vary the coupling between two superconducting qubits. Some level of qubit-qubit coupling is needed to perform gating operations. However, with fixed coupling, single qubit operations become considerably more difficult due to dispersive shifts in their energy levels transitions that depend on the state of the other qubit. Ideally, one wants a system in which the qubit-qubit coupling can be turned off to allow for single qubit operations, and then turned back on to allow for multi-qubit gate operations. I present results on a device that has two fixed-frequency transmon qubits capacitively coupled to a tunable thin-film LC resonator. The resonator can be tuned in situ over a range of 4.14 GHz to 4.94 GHz by applying an external magnetic flux to two single-Josephson junction loops, which are incorporated into the resonator’s inductance. The qubits have 0-to-1 transition frequencies of 5.10 GHz and 4.74 GHz. To isolate the system and provide a means for reading out the state of the qubit readout, the device was mounted in a 3D Al microwave cavity with a TE101 mode resonance frequency of about 6.1 GHz. The flux-dependent transition frequencies of the system were measured and fit to results from a coupled Hamiltonian model. With the LC resonator tuned to its minimum resonance frequency, I observed a qubit-qubit dispersive shift of 2χ_qq≈ 0.1 MHz, which was less than the linewidth of the qubit transitions. This dispersive shift was sufficiently small to consider the coupling “off”, allowing single qubit operations. The qubit-qubit dispersive shift varied with the applied flux up to a maximum dispersive shift of 2χ_qq≈ 6 MHz. As a proof-of-principle, I present preliminary results on performing a CNOT gate operation on the qubits when the coupling was “on” with 2χ_qq≈ 4 MHz. This dissertation also includes observations of the temperature dependence of the relaxation time T1 of three Al/AlOx/Al transmons. We found that, in some cases, T1 increased by almost a factor of two as the temperature increased from 30 mK to 100 mK. We found that this anomalous behavior was consistent with loss due to non-equilibrium quasiparticles in a transmon where one electrode in the tunnel junction had a smaller volume and slightly smaller superconducting energy gap than the other electrode. At sufficiently low temperatures, non-equilibrium quasiparticles accumulate in the electrode with a smaller gap, leading to an increased density of quasiparticles at the junction and a corresponding decrease in the relaxation time. I present a model of this effect, use the model to extract the density of non-equilibrium quasiparticles in the device, and find the values of the two superconducting energy gaps.
    URI
    http://hdl.handle.net/1903/21584
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility