University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ADJUSTMENT FOR DENSITY METHOD TO ESTIMATE RANDOM EFFECTS IN HIERARCHICAL BAYES MODELS

    Thumbnail
    View/Open
    Cao_umd_0117E_19337.pdf (887.3Kb)
    No. of downloads: 67

    Date
    2018
    Author
    Cao, Lijuan
    Advisor
    Lahiri, Partha
    DRUM DOI
    https://doi.org/10.13016/M27D2QB4T
    Metadata
    Show full item record
    Abstract
    The Adjustment for Density Method (ADM) has received considerable attention in recent years. The method was proposed about thirty years back in approximating a complex univariate density by a density from the Pearson family of distributions. The ADM has been developed to approximate posterior distributions of hyper-parameters, shrinkage parameters and random effects of a few well-known univariate hierarchical Bayesian models. This dissertation advances the ADM to approximate posterior distributions of hyper-parameters, shrinkage parameters, synthetic probabilities and multinomial probabilities associated with a multinomial-Dirichlet-logit Bayesian hierarchical model. The method is adapted so it can be applied to weighted counts. We carefully propose prior for the hyper-parameters of the multinomial-Dirichlet-logit model so as to ensure propriety of posterior of relevant parameters of the model and to achieve good small sample properties. Following general guidelines of the ADM for univariate distributions, we devise suitable adjustments to the posterior density of the hyper-parameters so that adjusted posterior modes lie in the interior of the parameter space and to reduce the bias in the point estimates. Beta distribution approximations are employed when approximating the posterior distributions of the individual shrinkage factors and Dirichlet distribution approximations are used when approximating the posterior distributions of the synthetic probabilities. The parameters of the beta or the Dirichlet posterior density are approximated carefully so the method approximates the exact posterior densities accurately. Simulation studies demonstrate that our proposed approach in estimating the multinomial probabilities in the multinomial-Dirichlet-logit model is accurate in estimation, fast in speed and has better operating characteristics compared to other existing procedures. We consider two applications of our proposed hierarchical Bayes model using complex survey and Big Data. In the first example, we consider small area gender proportions using a binomial-beta-logit model. The proposed method improves on a rival method in terms of smaller margins of error. In the second application, we demonstrate how small area multi-category race proportions estimates, obtained by direct method applied on Twitter data, can be improved by the proposed method. This dissertation ends with a discussion on future research in the area of ADM.
    URI
    http://hdl.handle.net/1903/21143
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility