Show simple item record

dc.contributor.authorLoboda, Tatiana
dc.contributor.authorO'Neal, Kelley
dc.contributor.authorYang, Qi
dc.date.accessioned2017-12-07T13:12:53Z
dc.date.available2017-12-07T13:12:53Z
dc.date.issued2017-04-04
dc.identifierdoi:10.13016/M2028PF4D
dc.identifier.urihttp://hdl.handle.net/1903/20226
dc.description.abstractSatellite observations of fire occurrence, extent, and spread have become a routine source of information for fire scientists and managers worldwide. In remote regions of arctic and boreal zones, satellite observations frequently represent the primary and at times the only source of information about fire occurrence. While a large suite of observations have been shown to provide beneficial and important information about fire occurrence, coarse and moderate resolution data from polar orbiting satellites in optical and thermal ranges of the electromagnetic spectrum provide the most widely-used observations that characterize on-going burning processes and consistent estimates of fire-affected areas. The reliance of the global community on active fire detections and burned area estimates delivered from the Moderate Resolution Imaging Spectroradiometer (MODIS) raises concerns about the continuity of the data record beyond the lifetime of this mission. The Visible Infrared Imaging Radiometer Suite (VIIRS) operated by National Oceanic and Atmospheric Administration (NOAA) represents the future of satellite fire monitoring within US-designed and operated missions. While some advancements have been introduced into the VIIRS fire detection capabilities, including enhanced spatial resolution of spectral bands aimed at active fire detection, the reduced number of orbital overpasses (only one VIIRS instrument is currently in orbit compared to two MODIS instruments) and other differences in data acquisition open the potential for substantial differences in future fire monitoring and mapping capacity and long-term record compatibility between MODIS and VIIRS observations. This study aims to assess and quantify the differences in characterization of on-going burning processes (including in time of detection, spatial fidelity and extent of fire detection coverage, fire spread rate, and fire radiative power) and post-fire extent within fire events (i.e. burned area mapping) in boreal forests and tundra regions of North America delivered by the MODIS Terra and Aqua collection 6 and VIIRS 750m and 375m active fire products and derived burned area maps. Since VIIRS standard data suite does not include burned area estimates, we used VIIRS and MODIS collection 6 surface reflectance products to generate an annual burned area record using the Regionally Adapted Burned Area algorithm developed specifically for high northern latitudes. Our initial results indicate that despite higher spatial resolution of VIIRS observations, the MODIS record (even from a single satellite) delivers a more comprehensive coverage of on-going burning within the large fire events of the 2014 fire season in the Northwest Territories, Canada. However, while substantial differences in fire characterization exist between the satellite data, there is strong potential for calibration of the data records (particularly for the burned area and fire radiative power estimates) for the two instruments necessary to achieve a consistent long-term record of fire occurrence in the high northern latitudes that would support long-term scientific studies and management decision-making processes.en_US
dc.description.sponsorshipNASA Terrestrial Ecology Program Arctic-Boreal Vulnerability Experiment (ABOVE)en_US
dc.language.isoenen_US
dc.subjectFireen_US
dc.subjectBorealen_US
dc.subjectMODISen_US
dc.subjectVIIRSen_US
dc.subjectHigh northern latitudesen_US
dc.titleEvaluating characterization of fire extent and fire spread in boreal and tundra fires of Alaska from coarse and moderate resolution MODIS and VIIRS dataen_US
dc.typePresentationen_US
dc.relation.isAvailableAtCollege of Behavioral & Social Sciencesen_us
dc.relation.isAvailableAtGeographyen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record