Cross-Layer Resource Allocation Protocols for Multimedia CDMA Networks

Loading...
Thumbnail Image

Files

umi-umd-1941.pdf (1.08 MB)
No. of downloads: 1405

Publication or External Link

Date

2004-11-11

Citation

DRUM DOI

Abstract

The design of mechanisms to efficiently allow many users to maintain simultaneous communications while sharing the same transmission medium is a crucial step during a wireless network design. The resource allocation process needs to meet numerous requirements that are sometimes conflicting, such as high efficiency, network utilization and flexibility and good communication quality. Due to limited resources, wireless cellular networks are normally seen as having some limit on the network capacity, in terms of the maximum number of calls that may be supported. Being able to dynamically extend network operation beyond the set limit at the cost of a smooth and small increase in distortion is a valuable and useful idea because it provides the means to flexibly adjust the network to situations where it is more important to service a call rather than to guarantee the best quality.

In this thesis we study designs for resource allocation in CDMA networks carrying conversational-type calls. The designs are based on a cross-layer approach where the source encoder, the channel encoder and, in some cases, the processing gains are adapted. The primary focus of the study is on optimally multiplexing multimedia sources. Therefore, we study optimal resource allocation to resolve interference-generated congestion for an arbitrary set of real-time variable-rate source encoders in a multimedia CDMA network. Importantly, we show that the problem could be viewed as the one of statistical multiplexing in source-adapted multimedia CDMA. We present analysis and optimal solutions for different system setups. The result is a flexible system that sets an efficient tradeoff between end-to-end distortion and number of users. Because in the presented cross-layer designs channel-induced errors are kept at a subjectively acceptable level, the proposed designs are able to outperform equivalent CDMA systems where capacity is increased in the traditional way, by allowing a reduction in SINR.

An important application and part of this study, is the use of the proposed designs to extend operation of the CDMA network beyond a defined congestion operating point. Also, the general framework for statistical multiplexing in CDMA is used to study some issues in integrated real-time/data networks.

Notes

Rights