Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Biology
    • Biology Research Works
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Biology
    • Biology Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structure and decay of a proto-Y region in Tilapia, Oreochromis niloticus

    Thumbnail
    View/Open
    1471-2164-15-975.pdf (1.238Mb)
    No. of downloads: 176

    External Link(s)
    https://doi.org/10.1186/1471-2164-15-975
    Date
    2014
    Author
    Gammerdinger, William J.
    Conte, Matthew A.
    Acquah, Enoch A.
    Roberts, Reade B.
    Kocher, Thomas D.
    Citation
    Gammerdinger, W.J., Conte, M.A., Acquah, E.A. et al. Structure and decay of a proto-Y region in Tilapia, Oreochromis niloticus. BMC Genomics 15, 975 (2014).
    DRUM DOI
    https://doi.org/10.13016/M22J6847J
    Metadata
    Show full item record
    Abstract
    Sex-determination genes drive the evolution of adjacent chromosomal regions. Sexually antagonistic selection favors the accumulation of inversions that reduce recombination in regions adjacent to the sex-determination gene. Once established, the clonal inheritance of sex-linked inversions leads to the accumulation of deleterious alleles, repetitive elements and a gradual decay of sex-linked genes. This in turn creates selective pressures for the evolution of mechanisms that compensate for the unequal dosage of gene expression. Here we use whole genome sequencing to characterize the structure of a young sex chromosome and quantify sex-specific gene expression in the developing gonad. We found an 8.8 Mb block of strong differentiation between males and females that corresponds to the location of a previously mapped sex-determiner on linkage group 1 of Oreochromis niloticus. Putatively disruptive mutations are found in many of the genes within this region. We also found a significant female-bias in the expression of genes within the block of differentiation compared to those outside the block of differentiation. Eight candidate sex-determination genes were identified within this region. This study demonstrates a block of differentiation on linkage group 1, suggestive of an 8.8 Mb inversion encompassing the sex-determining locus. The enrichment of female-biased gene expression inside the proposed inversion suggests incomplete dosage compensation. This study helps establish a model for studying the early-to-intermediate stages of sex chromosome evolution.
    Notes
    Funding for Open Access provided by the UMD Libraries Open Access Publishing Fund.
    URI
    http://hdl.handle.net/1903/19651
    Collections
    • Biology Research Works

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility