Gamma-ray Bursts: Lighting up the High-Redshift Universe

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2017

Citation

Abstract

Gamma-ray bursts (GRBs) are the most luminous events in the Universe with Eγ,iso ∼ 10^48−54 erg. Leading models hypothesize that GRBs are created from inter- nal collisions within collimated and ultrarelativistic jets. The jets then shock-heat the surrounding material (e.g. interstellar medium) to create GRB afterglows. These afterglows are extremely useful probes of the Universe because long GRBs are (1) bright events that can be used as backlights for absorption studies, (2) able to probe at all redshifts massive stars exist, and (3) transient events that allow us to follow- up on the host galaxies at late times. In this thesis we study the environments of GRBs.

We first explore the relationship between GRB and supernova (SN) using a nearby GRB-SN (GRB 130702A/SN 2013dx) at z = 0.145. There are only nine other GRB-SNe that were close enough to have extensive spectroscopic and photometric follow-up of the SN at late times. We create a quasi-bolometic light curve of SN 2013dx and fit an analytical equation to the quasi-bolometric light curve combined with measurements of the photospheric velocity to determine SN parameters: mass of 56Ni, kinetic energy, and ejecta mass. We examine the relationship between SN parameters and Eγ,iso for the 10 well-studied GRB-SNe, but find no correlations despite numerical simulation predictions that the mass of 56Ni should correlate with the degree of asymmetry.

We then move to larger distance scales and use GRB afterglows as bright back- lights to study distant galaxies. We examine the galactic environments of Damped Lyman-α systems (DLAs; NHI ≥ 10^20.3 cm^−2 ) identified with GRB afterglows at z ∼ 2 − 6. We use late-time photometry after the GRB afterglow has faded to determine star formation rates (SFRs) from rest-frame ultraviolet measurements or spectral energy distribution (SED) models from multiband photometry. We com- pare our sample’s SFRs to a sample of quasars (QSOs) DLA host galaxies. Despite the overlapping NHI and redshift ranges, our GRB-DLA galaxies have much larger SFRs than the QSO-DLA host galaxy sample; this may suggest that the QSO-DLA and GRB-DLA galaxy populations are different. We also compare star formation efficiencies to the local Universe and simulations at z = 3.

A large portion of this thesis has focused on the development of a new ground- based GRB afterglow follow-up instrument, the Rapid infrared IMAger-Spectrometer (RIMAS), that will target high-redshift GRB afterglows to study early galaxy envi- ronments. RIMAS covers 0.97-2.37 μm and can simultaneously observe two band- passes in any observing mode: photometry, low-resolution spectroscopy (R ∼ 30), or high-resolution spectroscopy (R ∼ 4000).

In particular, this thesis focuses on RIMAS’s three detectors: two science grade

Teledyne HgCdTe Astronomy Wide Area Infrared Imager with 2K x 2K, Reference Pixels and Guide Mode (H2RG) and a slit-viewer Spitzer Legacy Indium-Antimonide (InSb) array. We describe the detector hardware and characterization in detail and discuss general infrared detector troubleshooting methods at both cryogenic and room temperatures.

Several software packages have been developed for RIMAS throughout this thesis work. We introduce RIMAS’s quick reduction pipeline that takes raw images from a single acquisition and returns a single result frame. We then present a generalized data reduction pipeline that we have tested on two currently operational photometers. We also describe our detailed and realistic RIMAS throughput models for all three observing modes as well as our online observer calculators with these throughput models. All of our data products are open source and are publicly available on Github repositories with detailed documentation.

Notes

Rights