Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification, life history, and ecology of peritrich ciliates as epibionts on calanoid copepods in the Chesapeake Bay

    Thumbnail
    View/Open
    dissertation.pdf (2.337Mb)
    No. of downloads: 6797

    Date
    2004-02-10
    Author
    Utz, Laura Roberta Pinto
    Advisor
    Small, Eugene B.
    Metadata
    Show full item record
    Abstract
    Epibiotic relationships are a widespread phenomenon in marine, estuarine and freshwater environments, and include diverse epibiont organisms such as bacteria, protists, rotifers, and barnacles. Despite its wide occurrence, epibiosis is still poorly known regarding its consequences, advantages, and disadvantages for host and epibiont. Most studies performed about epibiotic communities have focused on the epibionts' effects on host fitness, with few studies emphasizing on the epibiont itself. The present work investigates species composition, spatial and temporal fluctuations, and aspects of the life cycle and attachment preferences of Peritrich epibionts on calanoid copepods in Chesapeake Bay, USA. Two species of Peritrich ciliates (Zoothamnium intermedium Precht, 1935, and Epistylis sp.) were identified to live as epibionts on the two most abundant copepod species (Acartia tonsa and Eurytemora affinis) during spring and summer months in Chesapeake Bay. Infestation prevalence was not significantly correlated with environmental variables or phytoplankton abundance, but displayed a trend following host abundance. Investigation of the life cycle of Z. intermedium suggested that it is an obligate epibiont, being unable to attach to non-living substrates in the laboratory or in the field. Formation of free-swimming stages (telotrochs) occurs as a result of binary fission, as observed for other peritrichs, and is also triggered by death or molt of the crustacean host. Attachment success of dispersal stages decreased as telotroch age increased, suggesting that colonization rates in nature may be strongly dependent on intense production of telotrochs by the epibiont ciliates. Laboratory experiments demonstrated that Z. intermedium colonizes equally adult and copepodite stages of A. tonsa and E. affinis. The epibiont is also able to colonize barnacle nauplii and a harpacticoid copepod, when these were the only living host available, but fails to colonize non-crustacean hosts, such as the rotifer Brachionus calyciflorus or polychaete larvae. When the epibiont could choose between adults of A. tonsa and alternate hosts from the zooplankton community, it always colonized preferentially its primary host, with only a few telotrochs attaching to other crustaceans (barnacle nauplii and harpacticoid copepod), and to rotifer eggs, suggesting that specific cues may be involved in host selection by this epibiotic species.
    URI
    http://hdl.handle.net/1903/192
    Collections
    • Biology Theses and Dissertations
    • MEES Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility