Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SUPER RESOLUTION IMAGING AND NANOSCALE MAGNETIC DETECTION IN MICROFLUDIC DEVICE.

    Thumbnail
    View/Open
    Lim_umd_0117E_16706.pdf (2.194Mb)
    No. of downloads: 281

    Date
    2015
    Author
    Lim, Kangmook
    Advisor
    Waks, Edo
    DRUM DOI
    https://doi.org/10.13016/M2D147
    Metadata
    Show full item record
    Abstract
    Nanoscale sensing and imaging tools are the most emerging techniques in fields of nanoscience research and engineering. To demonstrate nanoscale sensing and imaging tools, it is required to achieve high sensitivity and spatial resolution simultaneously. By fulfilling the requirements, this thesis describes mainly two different scanning applications employing quantum probes and nanoparticle positioning technique using fluid flow control. First, we develop a method that can systematically probe the distortion of an emitter’s diffraction spot near a nanoparticle in a microfluidic device. The results provide a better fundamental understanding of near-field coupling between emitters and nanophotonic structures. We demonstrate that by monitoring the distortion of the diffraction spot we can perform highly accurate imaging of the nanoparticle with 8 nm spatial precision. Next, we develop a method to perform localized magnetometry in a microfluidic device with a 48 nm spatial precision. We map out the local field distribution of a magnetic nanoparticle by manipulating it in the vicinity of an immobilized single NV center and optically detecting the induced Zeeman shift with a magnetic field sensitivity of 17.5 μT Hz-1/2. Finally, we introduce a scanning magnetic field technique that employs multiple NV centers in diamond nanocrystals suspended in microfluidic channels. This technique has advantages of short acquisition time over wide-field with nanoscale spatial resolution. The advantages make our technique attractive to a wide range of magnetic imaging applications in fluidic environments and biophysical systems.
    URI
    http://hdl.handle.net/1903/17343
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility