Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental study of entropy generation and synchronization in networks of coupled dynamical systems

    Thumbnail
    View/Open
    Hagerstrom_umd_0117E_16563.pdf (8.445Mb)
    No. of downloads: 2095

    Date
    2015
    Author
    Hagerstrom, Aaron Morgan
    Advisor
    Roy, Rajarshi
    DRUM DOI
    https://doi.org/10.13016/M23S8J
    Metadata
    Show full item record
    Abstract
    This thesis describes work in two areas: unpredictability in a system with both single photon detection and chaos, and synchronization in networks of coupled systems. The unpredictability of physical systems can depend on the scale at which they are observed. For example, single photons incident on a detector arrive at random times, but slow intensity variations can be observed by counting many photons over large time windows. We describe an experiment in which a weak optical signal is modulated by feedback from a single-photon detector. We demonstrate that at low photon rates, the photon arrivals are described by Poisson noise, while at high photon rates, the intensity of the light shows a deterministic chaotic modulation. Furthermore, we show that measurements of the entropy rate can resolve both noise and chaos, and describe the relevance of this observation to random number generation. We also describe an experimental system that allows for the study of large networks of coupled dynamical systems. This system uses a spatial light modulator (SLM) and a camera in a feedback configuration, and has an optical nonlinearity due to the relationship between a spatially-dependent phase shift applied by the modulator, and the intensity measured by the camera. This system is a powerful platform for studying synchronization in large networks of coupled systems, because it can iterate many (~1000) maps in parallel, and can be configured with any desired coupling matrix. We use this system to study cluster synchronization. It is often observed that networks synchronize in clusters. We show that the clusters that form can be predicted based on the symmetries of the network, and their stability can be analyzed. This analysis is supported by experimental measurements. The SLM feedback system can also exhibit chimera states. These states were first seen in models of large populations of coupled phase oscillators. Their defining feature is the coexistence of large populations of synchronized and unsynchronized oscillators in spite of symmetrical coupling configurations and homogeneous oscillators. Our SLM feedback system provided one of the first two experimental examples of chimera states. We observed chimeras in coupled map lattices. These states evolve in discrete time, and in this context, ``coherence'' and ``incoherence'' refer to smooth and discontinuous regions of a spatial pattern.
    URI
    http://hdl.handle.net/1903/17109
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility