Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Evolution and Function of the Pair-rule Gene fushi tarazu (ftz)

    Thumbnail
    View/Open
    Field_umd_0117E_16374.pdf (2.691Mb)
    No. of downloads: 141

    Date
    2015
    Author
    Field, Amanda
    Advisor
    Pick, Leslie
    DRUM DOI
    https://doi.org/10.13016/M25K9G
    Metadata
    Show full item record
    Abstract
    The homeodomain protein Fushi tarazu (Ftz) and its obligate cofactor Ftz-F1, an orphan nuclear receptor, cooperatively bind to DNA and co-regulate the transcription of genes responsible for segmentation in the early Drosophila embryo. Two interesting questions have arisen about these genes. The first question concerns the evolution of Ftz, which changed in arthropods from a Hox protein that likely bound its transcriptional targets with the cofactor Exd, to a pair-rule protein in Drosophila that synergistically binds DNA with its cofactor Ftz-F1. This change in function involved changes in both the expression and protein sequence of Ftz, which are being explored throughout arthropod lineages. To determine if the expression and function of ftz is conserved in Diptera, Ftz and related genes were examined in the mosquito Aedes aegypti using reverse transcriptase - PCR, in situ hybridization, and ectopic expression techniques. The second question probes the mechanisms underlying Drosophila Ftz/Ftz-F1 target site recognition in vivo. To date, direct computational attempts to identify downstream target genes and their enhancers have been inadequate. Towards this end, a microarray analysis was performed comparing wild type and ftz-f1 mutant embryos. This generated a list of Ftz/Ftz-F1 target genes whose expression was lower in ftz-f1 mutants than wild type. To identify genes among this group that are directly regulated by Ftz/Ftz-F1, potential Ftz/Ftz-F1 binding sites around these genes were identified by combining Ftz in vivo ChIP data with a computational search for candidate Ftz-F1 binding sites. Next, to test whether these regions correspond to Ftz/Ftz-F1-dependent enhancers, enhancer-lacZ reporter genes were constructed and their expression was analyzed in wild type and ftz mutant embryos. Of 10 enhancers tested, 8 generated expression patterns that overlap with Ftz and Ftz-F1 expression in early embryos and were lost in ftz mutants. The enhancers found in this study, along with previously identified Ftz/Ftz-F1-dependent enhancers, were analyzed to identify binding motifs for additional transcription factors that might co-regulate gene expression with Ftz/Ftz-F1. Four transcription factors were identified that could potentially be involved in Ftz/Ftz-F1-dependent gene regulation: Deaf-1, Dichaete, Zeste, all transcriptional activators, and GAGA factor, a repressor. Together, these studies identified five new Ftz/Ftz-F1-dependent target genes and seven new Ftz/Ftz-F1-regulated enhancers, and they suggest that other transcription factors may also play roles in the pair-rule gene regulatory system.
    URI
    http://hdl.handle.net/1903/16946
    Collections
    • Biology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility