Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    INVESTIGATING METHODS OF INCORPORATING COVARIATES IN GROWTH MIXING MODELING: A SIMULATION STUDY

    Thumbnail
    View/Open
    Li_umd_0117E_16371.pdf (1.607Mb)
    No. of downloads: 248

    Date
    2015
    Author
    Li, Ming
    Advisor
    Harring, Jeffrey R.
    DRUM DOI
    https://doi.org/10.13016/M2JS9Z
    Metadata
    Show full item record
    Abstract
    The current research aims to evaluate the performance of various approaches for estimating covariates within the latent class membership regression model in the context of growth mixture models. Researchers have been searching for more efficient and accurate estimation methods for incorporating covariate information in mixture modeling in order to clearly differentiate between subjects from different groups and to make interpretation of the growth trajectories more meaningful. However, few studies have considered more complicated models such as growth mixture models where the latent class variable is more difficult to identify. To this end, two Monte Carlo simulations were conducted. In Simulation I, four estimation approaches were investigated to examine parameter recovery, variance and standard error efficacy related to both categorical and continuous covariates that defined the regression model for the latent class membership part of the model. Data generated for Simulation II include three covariates, with one dichotomous variable linked to latent class membership and the other two (one dichotomous and one continuous) associated with measurement part of the growth mixture model. Three estimation approaches were then compared using the population data generation model as well as a misspecified model.
    URI
    http://hdl.handle.net/1903/16943
    Collections
    • Human Development & Quantitative Methodology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility