Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Role of BK channels in cardiac function

    Thumbnail
    View/Open
    Lai_umd_0117E_16170.pdf (45.97Mb)
    No. of downloads: 28

    Date
    2015
    Author
    Lai, Michael
    Advisor
    Meredith, Andrea L
    DRUM DOI
    https://doi.org/10.13016/M2H33G
    Metadata
    Show full item record
    Abstract
    Large-conductance voltage- and Ca2+-activated potassium (BK) channels are critical modulators of cellular excitability throughout the cardiovascular and nervous systems. The first aim of this work focuses on a novel role for BK channels in regulating cardiac pacing. Recently, BK channels were implicated in heart rate regulation, but the underlying mechanism was unclear. We hypothesized that BK channels regulate heart rate by modulating the intrinsic excitability of sinoatrial node cells (SANCs), the predominant cardiac pacemaking cells. We found that BK channel protein was expressed in SANCs, and that elimination of BK currents via pharmacological inhibition and genetic ablation reduces SANC excitability. Additionally, we characterized the properties of BK currents from SANCs. Our results indicate that BK channels are novel regulators of SANC function, and suggest that BK channels can serve as a novel therapeutic target for treating heart rate disorders. The second aim of this work focuses on the effect of single-nucleotide polymorphisms (SNPs) on BK current properties. There are approximately 100 known non-synonymous SNPs in human KCNMA1, the gene that encodes BK channels, but few have been characterized or linked with disease. We hypothesized that SNPs in KCNMA1 associated with disease, or located in domains of the BK channel gating ring that mediate Ca2+-dependent activation would alter BK current properties. We determined that the effects of SNPs on BK current properties were Ca2+ concentration-dependent. Also, we found that SNP-induced alterations in current kinetics influenced the amplitude of BK currents evoked by action potential waveforms. These results indicate that SNPs in KCNMA1 can modulate BK current properties and could contribute to the diversity of BK currents evoked by physiological stimuli.
    URI
    http://hdl.handle.net/1903/16569
    Collections
    • Fischell Department of Bioengineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility