Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Maritime Piracy: Solving the Optimized Transit Path Problem

    Thumbnail
    View/Open
    Schedel_umd_0117E_16038.pdf (5.023Mb)
    No. of downloads: 712

    Date
    2015
    Author
    Schedel, John Robert
    Advisor
    Baecher, Gregory B
    DRUM DOI
    https://doi.org/10.13016/M2191F
    Metadata
    Show full item record
    Abstract
    Models have been developed that accurately predict the probability of pirate activity at locations throughout the Arabian Sea. With these piracy prediction models, mariners transiting this region can ensure that their course avoids the highest threat regions and that ample anti-piracy precautions are in place elsewhere. However, they are on their own to determine their "best" transit path. Using unique piracy success predictors and transit cost calculators, along with existing pirate activity predictions, this research develops a method for determining the Optimized Transit Path through the Arabian Sea. This method simultaneously optimizes two different attributes, piracy avoidance and cost minimization, based on a mariner's priorities. The Optimized Transit Path (OTP) algorithm calculates the minimum cumulative path through a two-dimensional, geographic matrix. The OTP algorithm finds the shortest path through the network from a starting line on one side of the matrix to a finish line on the other side. Using a computer code of the algorithm, experimental tests quantified the OTP algorithm's computation speed and required number of calculations to reach a solution. Further, the performance of the OTP algorithm at solving the piracy matrix was compared to the speed of other shortest path algorithms. Based on this study, the OTP algorithm's speed at solving the piracy matrix was comparable to that of the fastest shortest path algorithm in use today, Dijkstra's Algorithm implementing a Min-Priority queue with a Fibonacci Heap, and significantly faster than all others. Because it can use the piracy prediction matrix directly as an input, the OTP algorithm is especially well suited for solving the piracy avoidance problem. More importantly, its calculation of Optimized Slack quantifies the additional cost of diverting from the shortest path, information not calculated by other shortest path methods. However, use of the OTP algorithm is fairly limited, as it is only well suited for matrices that represent a flat plane of interconnected geographic areas, with movement from a node limited to the eight adjacent nodes surrounding it. Another promising application of the methods in this paper is within the field of underwater search.
    URI
    http://hdl.handle.net/1903/16534
    Collections
    • Civil & Environmental Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility