Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS WITH APPLICATION TO VIEWERSHIP OF MOTION PICTURES

    Thumbnail
    View/Open
    Tian_umd_0117E_15774.pdf (934.9Kb)
    No. of downloads: 271

    Date
    2014
    Author
    Tian, Yue
    Advisor
    Smith, Paul
    DRUM DOI
    https://doi.org/10.13016/M2GP7J
    Metadata
    Show full item record
    Abstract
    Principal Component Analysis (PCA) is one widely used data processing technique in application, especially for dimensionality reduction. Functional Principal Component Analysis (fPCA) is a generalization of ordinary PCA, which focuses on a sample of functional observations and projects the original functional curves to a new space of orthogonal dimensions to capture the primary features of original functional curves. While, fPCA suffers from two potential error sources. One error source is originated from truncation when we approximate the functional subject's expansion; The other stems from estimation when we estimate the principal components from the sample. We first introduce a generalized functional linear regression model and propose it in the Quasi-likelihood setting. Asymptotic inference of the proposed functional regression model is developed. We also utilize the proposed model to help marketing operational decision process by analyzing viewership of motion pictures. We start with discussing customer reviews effect on movie box office sales. We use the functional regression model with function interactions to measure the effect of Word-of-Mouth on movie box office sales. One main challenge of modeling with functional interactions is the interpretation of model estimate results. We demonstrate one method to help us get important insights from model results by plotting and controlling a re-labbeld 3-D plot. Apart from movie performance in theater, we also employ functional regression model to predict movie pre-release demand in Video-on-Demand (VOD) channel. As its growing popularity, VOD market attracts much attention in marketing research. We analyze the prediction accuracy of our proposed functional regression model with spatial components and find that our proposed model gives us the best predictive accuracy. In summary, the dissertation develops asymptotic properties of a generalized functional linear regression model, and applies the proposed model in analyzing viewership of motion picture both in theater and Video-on-Demand channels. The proposed model not only advances our understanding of motion picture demand, but also helps optimize business decision making process.
    URI
    http://hdl.handle.net/1903/16273
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility