Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structural biology of GroEL assisted protein folding

    Thumbnail
    View/Open
    Fei_umd_0117E_15704.pdf (16.37Mb)
    No. of downloads: 177

    Date
    2014
    Author
    Fei, Xue
    Advisor
    Lorimer, George H
    DRUM DOI
    https://doi.org/10.13016/M2X896
    Metadata
    Show full item record
    Abstract
    GroEL/ES is the classical example of molecular chaperone that assists the re-folding of many misfolded proteins (SP). Recent kinetic analyses revealed a new paradigm of how GroEL/ES uses ATP to assist protein folding. Following these pioneering biochemical studies, I address two fundamental questions related to GroEL-assisted protein folding using structural biology methods. First, how does GroEL capture SP and how does SP change the kinetics of ADP release? Second, how does GroEL/ES encapsulate SP and control the duration of SP encapsulation? Chapter 1 summarizes the ATPase cycle of GroEL revealed by systematic biochemical studies, and identifies knowledge gaps in the GroEL-assisted protein folding. Chapter 2 describes general methods of protein purification and computational approaches, used to analyze conformational differences between two GroEL structures. Chapter 3 and 4 are focused on the capturing of substrate protein by GroEL. Crystal structures of GroELD83AR197A-ADP14 and GroELD83AR197A show for the first time, ADP binding breaks seven-fold symmetry in the apical and intermediate domains. Such asymmetry provides the structural basis for GroEL to capture heterogeneous SPs and for SP to regulate the release of ADP. In chapter 5, I described how GroEL/ES encapsulates substrate protein. Two crystal structures of the predominate SP encapsulation complexes: GroEL-GroES2 "football" complex were reported. One of the complexes is SP free and the other encapsulates two Rubisco molecules simultaneously. From the conformational rearrangement of the inter-ring interface, we proposed "football" complex transmits ATP asymmetry between the rings through an electrostatic interaction between K105 and A109. Chapter 6 summarized the new knowledge gained by determining these four crystal structures. This chapter ends with a discussion on how chaperonin machine like GroEL promotes the correct folding of various proteins.
    URI
    http://hdl.handle.net/1903/16169
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility