Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Highly Efficient SiC Based Onboard Chargers for Plug-in Electric Vehicles

    Thumbnail
    View/Open
    Wang_umd_0117E_15539.pdf (5.542Mb)
    No. of downloads: 2579

    Date
    2014
    Author
    Wang, Haoyu
    Advisor
    Khaligh, Alireza
    DRUM DOI
    https://doi.org/10.13016/M2DP4S
    Metadata
    Show full item record
    Abstract
    Grid-enabled plug-in electrified vehicles (PEVs) are deemed as one of the most sustainable solutions to profoundly reduce both oil consumption and greenhouse gas emissions. One of the most important realities, which will facilitate the adoption of PEVs is the method by which these vehicles will be charged. This dissertation focuses on the research of highly efficient onboard charging solutions for next generation PEVs. This dissertation designs a two-stage onboard battery charger to charge a 360 V lithium-ion battery pack. An interleaved boost topology is employed in the first stage for power factor correction (PFC) and to reduce total harmonic distortion (THD). In the second stage, a full bridge inductor-inductor-capacitor (LLC) multi-resonant converter is adopted for galvanic isolation and dc/dc conversion. Design considerations focusing on reducing the charger volume, and optimizing the conversion efficiency over the wide battery pack voltage range are investigated. The designed 1 kW Silicon based charger prototype is able to charge the battery with an output voltage range of 320 V to 420 V from 110 V, 60 Hz single-phase grid. Unity power factor, low THD, and high peak conversion efficiency have been demonstrated experimentally. This dissertation proposes a new technique to track the maximum efficiency point of LLC converter over a wide battery state-of-charge range. With the proposed variable dc link control approach, dc link voltage follows the battery pack voltage. The operating point of the LLC converter is always constrained to the proximity of the primary resonant frequency, so that the circulating losses and the turning off losses are minimized. The proposed variable dc link voltage methodology, demonstrates efficiency improvement across the wide state-of-charge range. An efficiency improvement of 2.1% at the heaviest load condition and 9.1% at the lightest load condition for LLC conversion stage are demonstrated experimentally. This dissertation proposes a novel PEV charger based on single-ended primary-inductor converter (SEPIC) and the maximum efficiency point tracking technique of an LLC converter. The proposed charger architecture demonstrates attracting features such as (1) compatible with universal grid inputs; (2) able to charge the fully depleted battery pack; (3) pulse width modulation and simplified control algorithm; and (4) the advantages of Silicon Carbide MOSFETs can be fully manifested. A 3.3 kW all Silicon Carbide based PEV charger prototype is designed to validate the proposed idea.
    URI
    http://hdl.handle.net/1903/15901
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility