Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    HIERARCHICAL MAPPING TECHNIQUES FOR SIGNAL PROCESSING SYSTEMS ON PARALLEL PLATFORMS

    Thumbnail
    View/Open
    Wang_umd_0117E_15481.pdf (7.414Mb)
    No. of downloads: 529

    Date
    2014
    Author
    Wang, Lai-Huei
    Advisor
    Bhattacharyya, Shuvra S.
    DRUM DOI
    https://doi.org/10.13016/M2FP43
    Metadata
    Show full item record
    Abstract
    Dataflow models are widely used for expressing the functionality of digital signal processing (DSP) applications due to their useful features, such as providing formal mechanisms for description of application functionality, imposing minimal data-dependency constraints in specifications, and exposing task and data level parallelism effectively. Due to the increased complexity of dynamics in modern DSP applications, dataflow-based design methodologies require significant enhancements in modeling and scheduling techniques to provide for efficient and flexible handling of dynamic behavior. To address this problem, in this thesis, we propose an innovative framework for mode- and dynamic-parameter-based modeling and scheduling. We apply, in a systematically integrated way, the structured mode-based dataflow modeling capability of dynamic behavior together with the features of dynamic parameter reconfiguration and quasi-static scheduling. Moreover, in our proposed framework, we present a new design method called parameterized multidimensional design hierarchy mapping (PMDHM), which is targeted to the flexible, multi-level reconfigurability, and intensive real-time processing requirements of emerging dynamic DSP systems. The proposed approach allows designers to systematically represent and transform multi-level specifications of signal processing applications from a common, dataflow-based application-level model. In addition, we propose a new technique for mapping optimization that helps designers derive efficient, platform-specific parameters for application-to-architecture mapping. These parameters help to maximize system performance on state-of-the-art parallel platforms for embedded signal processing. To further enhance the scalability of our design representations and implementation techniques, we present a formal method for analysis and mapping of parameterized DSP flowgraph structures, called topological patterns, into efficient implementations. The approach handles an important class of parameterized schedule structures in a form that is intuitive for representation and efficient for implementation. We demonstrate our methods with case studies in the fields of wireless communication and computer vision. Experimental results from these case studies show that our approaches can be used to derive optimized implementations on parallel platforms, and enhance trade-off analysis during design space exploration. Furthermore, their basis in formal modeling and analysis techniques promotes the applicability of our proposed approaches to diverse signal processing applications and architectures.
    URI
    http://hdl.handle.net/1903/15893
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility