Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Differential Radial Capillary Action of Ligand Assay Enables Systematic Identification and Characterization of Ligand Binding Interactions with Proteins and Nucleic Acids Abstract

    Thumbnail
    View/Open
    Roelofs_umd_0117E_15379.pdf (12.16Mb)
    No. of downloads: 151

    Date
    2014
    Author
    Roelofs, Kevin G.
    Advisor
    Lee, Vincent T
    DRUM DOI
    https://doi.org/10.13016/M2VS3G
    Metadata
    Show full item record
    Abstract
    Cyclic di-GMP (cdiGMP) is a ubiquitous prokaryotic nucleotide signaling molecule that regulates important bacterial processes, including biofilm formation, motility, and virulence. The differential radial capillary action of ligand assay (DRaCALA) was developed to determine protein-ligand interactions and provide insight into the mechanism of cdiGMP signal transduction. DRaCALA is based on the ability of nitrocellulose membranes to separate free ligand from bound protein-ligand complexes resulting in precise measurements of the fraction of bound ligand. The principle of DRaCALA was demonstrated by detection of 3 radiolabeled nucleotides binding to their cognate receptors. DRaCALA also enabled the determination of affinity, specificity, and kinetics of cdiGMP-binding to Alg44. A unique feature of DRaCALA is the ability to determine specific binding interactions to heterologously expressed proteins in whole cell lysates, suggesting that individual open reading frames could be screened for the expression of a cdiGMP-binding protein. DRaCALA was applied on a genome-wide scale to systematically screen protein products of over 98% of <italic>Vibrio cholerae</italic> open reading frames for cdiGMP-binding activity. The DRaCALA ORFeome screen identified 5 of 10 previously described cdiGMP-binding proteins, 19 proteins with predicted cdiGMP-binding domains, and 6 novel putative cdiGMP-binding proteins lacking a defined cdiGMP-binding site. Direct cdiGMP-binding was demonstrated for the T2SE ATPase MshE, and cdiGMP-binding activity was observed for a <italic>Pseudomonas aeruginosa</italic> homolog PA14_29490. These results suggest that cdiGMP-binding may be a conserved feature of a subset of T2SE ATPases that regulate type IV pili and type II secretion. Finally, the applications of DRaCALA were extended for the determination of protein binding to nucleotide polymers of DNA and RNA and cdiGMP-binding to a RNA aptamer. In total these studies report the development of DRaCALA as a novel biochemical assay and its use in the systematic identification and characterization of protein-ligand interactions.
    URI
    http://hdl.handle.net/1903/15703
    Collections
    • Cell Biology & Molecular Genetics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility