Show simple item record

HIGH STRENGTH SEMI-ACTIVE ENERGY ABSORBERS USING SHEAR- AND MIXED-MODE OPERATION AT HIGH SHEAR RATES

dc.contributor.advisorWereley, Norman Men_US
dc.contributor.authorBecnel, Andrew Craigen_US
dc.date.accessioned2014-06-26T05:38:29Z
dc.date.available2014-06-26T05:38:29Z
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1903/15464
dc.description.abstractThis body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter crew seat. Characterization tests were carried out on the LMEAS using a 40 vol% MRF used in the previous magnetorheometer tests. These were analyzed using both flow curves and apparent viscosity vs. Mason number diagrams. The nondimensionalized Mason number analysis resulted in data for all conditions of temperature, fluid composition, and shear rate, to collapse onto a single characteristic or master curve. Significantly, the temperature corrected Mason number results from both the bench top magnetorheometer and full scale rotary vane MREA collapse to the same master curve. This enhances the ability of designers of MRFs and MREAs to safely and effectively apply characterization data collected in low shear rate, controlled temperature environments to operational environments that may be completely different. Finally, the Searle cell magnetorheometer was modified with an enforced eccentricity to work in both squeeze and shear modes simultaneously to achieve so called squeeze strengthening of the working MRF, thereby increasing the apparent yield stress and the specific energy absorption. By squeezing the active MR fluid, particles undergo compression-assisted aggregation into stronger, more robust columns which resist shear better than single chains. A hybrid model describing the squeeze strengthening behavior is developed, and recommendations are made for using squeeze strengthening to improve practical MREA devices.en_US
dc.language.isoenen_US
dc.titleHIGH STRENGTH SEMI-ACTIVE ENERGY ABSORBERS USING SHEAR- AND MIXED-MODE OPERATION AT HIGH SHEAR RATESen_US
dc.typeDissertationen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.contributor.departmentAerospace Engineeringen_US
dc.subject.pqcontrolledAerospace engineeringen_US
dc.subject.pqcontrolledMechanical engineeringen_US
dc.subject.pqcontrolledMaterials Scienceen_US
dc.subject.pquncontrolledAdaptive energy absorberen_US
dc.subject.pquncontrolledHigh shear rateen_US
dc.subject.pquncontrolledMagnetorheological fluidsen_US
dc.subject.pquncontrolledSmart fluidsen_US
dc.subject.pquncontrolledSqueeze strengtheningen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record