Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and Analysis of Exaggerated Rectilinear Gait-Based Snake-Inspired Robots

    Thumbnail
    View/Open
    Hopkins_umd_0117E_14988.pdf (6.269Mb)
    No. of downloads: 977

    Date
    2014
    Author
    Hopkins, James Kendrick
    Advisor
    Gupta, Satyandra K
    Metadata
    Show full item record
    Abstract
    Snake-inspired locomotion is much more maneuverable compared to conventional locomotion concepts and it enables a robot to navigate through rough terrain. A rectilinear gait is quite flexible and has the following benefits: functionality on a wide variety of terrains, enables a highly stable robot platform, and provides pure undulatory motion without passive wheels. These benefits make rectilinear gaits especially suitable for search and rescue applications. However, previous robot designs utilizing rectilinear gaits were slow in speed and required considerable vertical motion. This dissertation will explore the development and implementation of a new exaggerated rectilinear gait that which will enable high speed locomotion and more efficient operation in a snake-inspired robot platform. The exaggerated rectilinear gait will emulate the natural snake's rectilinear gait to gain the benefit a snake's terrain adaptability, but the sequence and range of joint motion will be greatly exaggerated to achieve higher velocities to support robot speeds within the range of human walking speed. The following issues will be investigated in this dissertation. First, this dissertation will address the challenge of developing a snake-inspired robot capable of executing exaggerated rectilinear gaits. To successfully execute the exaggerated rectilinear gait, a snake-inspired robot platform must be able to perform high speed linear expansion/contraction and pivoting motions between segments. In addition to high speed joint motion, the new mechanical architecture much also incorporate a method for providing positive traction during gait execution. Second, a new exaggerated gait dynamics model will be developed using well established kinematics and dynamics analysis techniques. In addition to the exaggerated rectilinear gaits which emphasize high speed, a set of exaggerated rectilinear gaits which emphasize high traction will also be developed for application on difficult terrain types. Finally, an exaggerated rectilinear that emphasizes energy efficiency is defined and analyzed. This dissertation provides the foundations for realizing a high speed limbless locomotion capable of meeting the needs of the search, rescue, and recovery applications.
    URI
    http://hdl.handle.net/1903/15202
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility