Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Heat Transfer and Pressure Drop Characteristics of a Manifold Microgroove Aerospace Condenser

    Thumbnail
    View/Open
    Boyea_umd_0117N_14827.pdf (1.589Mb)
    No. of downloads: 123

    Date
    2013
    Author
    Boyea, David L.
    Advisor
    Ohadi, Michael M
    Metadata
    Show full item record
    Abstract
    High performance condensers are an essential component in many energy conversion, electronics and process systems. Increased capacity and functionality with less and less available space has been a main driving force for development of smart condensers in energy systems. A literature survey of microchannel condensation shows that microchannels are useful for enhancing condensation heat transfer. Our previous work in this area has demonstrated that manifold microgroove heat exchangers operating in single-phase or two-phase modes offer substantially higher heat transfer performance with a greatly reduced pumping power when compared to state-of-art microchannel heat exchangers. Out previous microchannel condensation experiments was using have involved use of small scale manifold microgroove condensers (7 cm2 base area) and a manifold microgroove condenser of this size and capacity has not been investigated before. The goal is to enhance heat transfer performance while minimizing the pumping power, volume and weight. A compact lightweight manifold microgroove condenser, with 60 x 600 micron microgrooves and cooling capacity of 4kW, was fabricated, assembled and tested using two different manifold designs. Experiments using R134a and R236fa as working fluids and two different refrigerant side manifolds were performed. Overall heat transfer coefficient and the pressure drop across a manifold microgroove condenser were calculated and refrigerant side heat transfer coefficient was determined based on water side heat transfer coefficient. 4kW capacity was achieved with an LMTD of 8C. The manifold geometry was found to have a large effect on pressure drop and heat transfer performance as well as flow distribution. A majority of the pressure drop was found to be in the manifold creating poor flow distribution. Future work should focus on optimization of the refrigerant manifold design to reduce pressure drop, increase heat transfer and flow distribution as well as explore the effect of microchannel geometry. Unfortunately current stage of development CFD optimization techniques does not allow optimization of two-phase flow system. An optimization of the airside surface and manifold geometry of heat exchanger that potentially will be coupled with high performance condenser has been performed. It has been concluded that for high performances of single phase flow manifold flow area has to be comparable to microgrooves flow area.
    URI
    http://hdl.handle.net/1903/14846
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility