Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Morphotropic Phase Boundary Engineering in Ferroelectrics

    Thumbnail
    View/Open
    Liu_umd_0117N_14652.pdf (4.084Mb)
    No. of downloads: 1099

    Date
    2013
    Author
    Liu, Yueying
    Advisor
    Wuttig, Manfred
    Metadata
    Show full item record
    Abstract
    Barium calcium titanate (BCT), Sr-doped BCT (BSCT), and barium strontium calcium titanate-barium zirconate titanate xBSCT-(1-x)BZT (0.1&lex&le0.55) ceramics have been prepared by sol-gel method and solid state sintering process. The temperature dependences of dielectric constant and loss at different frequencies for all compositions were characterized and analyzed. For xBSCT-(1-x)BZT ceramics with 20% Ba in BCT substituted by Sr, the paraelectric-to-ferroelectric (cubic-to-tetragonal/rhombohedral) phase transition temperature T<sub>C</sub> increases for compositions of x<0.28, stays almost unchanged for x=0.28, and reduces significantly for x>0.28 with respect to the undoped xBCT-(1-x)BZT. Compared with BCT-BZT system, Sr-doped BSCT-BZT system shows a triple point at lower composition and temperature, and a morphotropic phase boundary (MPB) which is less vertical with respect to the composition axis in the phase diagram. Our results demonstrate that doping is an effective way to engineer MPB of BCT-BZT system and thus can help develop more compositions suitable for applications requiring large piezoelectric coefficient.
    URI
    http://hdl.handle.net/1903/14783
    Collections
    • Materials Science & Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility