Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Symbiotic Cache Resizing for CMPs with Shared LLC

    Thumbnail
    View/Open
    UMIACS-TR-2013-02.pdf (838.6Kb)
    No. of downloads: 476

    Date
    2013-09-11
    Author
    Choi, Inseok
    Yeung, Donald
    Metadata
    Show full item record
    Abstract
    This paper investigates the problem of finding the optimal sizes of private caches and a shared LLC in CMPs. Resizing private and shared caches in modern CMPs is one way to squeeze wasteful power consumption out of architectures to improve power efficiency. However, shrinking each private/shared cache has different impact on the performance loss and the power savings to the CMPs because each cache contributes differently to performance and power. It is beneficial for both performance and power to shrink the LRU way of the private/shared cache which saves power most and increases data traffic least. This paper presents Symbiotic Cache Resizing (SCR), a runtime technique that reduces the total power consumption of the on-chip cache hierarchy in CMPs with a shared LLC. SCR turnoffs private/shared-cache ways in an inter-core and inter-level manner so that each disabling achieves best power saving while maintaining high performance. SCR finds such optimal cache sizes by utilizing greedy algorithms that we develop in this study. In particular, Prioritized Way Selection picks the most power-inefficient way. LLC-Partitioning-aware Prioritized Way Selection finds optimal cache sizes from the multi-level perspective. Lastly, Weighted Threshold Throttling finds optimal threshold per cache level. We evaluate SCR in two-core, four-core and eight-core systems. Results show that SCR saves 13% power in the on-chip cache hierarchy and 4.2% power in the system compared to an even LLC partitioning technique. SCR saves 2.7X more power in the cache hierarchy than the state-of-the-art LLC resizing technique while achieving better performance.
    URI
    http://hdl.handle.net/1903/14422
    Collections
    • Technical Reports from UMIACS

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility