DESIGN AND DEVELOPMENT OF THREE-DIMENSIONAL DNA CRYSTALS UTILIZING CGAA PARALLEL BASE PAIRED MOTIFS

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2013

Citation

DRUM DOI

Abstract

Three-dimensional (3D) DNA crystals hold great potential for various applications such as the development of molecular scaffolds for use in protein structure determination by x-ray crystallography. The programmability and predictability of DNA make it a powerful tool for self-assembly but it is hindered by the linearity of the duplex structure. Predictable noncanonical base pairs and motifs have the potential to connect linear double-helical DNA segments into complex 3D structures. The sequence d(GCGAAAGCT) has been observed to form 3D crystals containing both noncanonical parallel pairs and canonical Watson-Crick pairs. This provided a template structure that we used in expanding the design and development of 3D DNA crystals along with exploring the use of predictable noncanonical motifs. The structures we determined contained all but one or two of the designed secondary structure interactions, depending on pH.

Notes

Rights