Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling the Bat Spatial Navigation System: A Neuromorphic VLSI Approach

    Thumbnail
    View/Open
    Massoud_umd_0117E_13628.pdf (4.326Mb)
    No. of downloads: 722

    Date
    2012
    Author
    Massoud, Tarek Mohamed Anwar
    Advisor
    Horiuchi, Timothy K
    Metadata
    Show full item record
    Abstract
    Autonomously navigating robots have long been a tough challenge facing engineers. The recent push to develop micro-aerial vehicles for practical military, civilian, and industrial use has added a significant power and time constraint to the challenge. In contrast, animals, from insects to humans, have been navigating successfully for millennia using a wide range of variants of the ultra-low-power computational system known as the brain. For this reason, we look to biological systems to inspire a solution suitable for autonomously navigating micro-aerial vehicles. In this dissertation, the focus is on studying the neurobiological structures involved in mammalian spatial navigation. The mammalian brain areas widely believed to contribute directly to navigation tasks are the Head Direction Cells, Grid Cells and Place Cells found in the post-subiculum, the medial entorhinal cortex, and the hippocampus, respectively. In addition to studying the neurobiological structures involved in navigation, we investigate various neural models that seek to explain the operation of these structures and adapt them to neuromorphic VLSI circuits and systems. We choose the neuromorphic approach for our systems because we are interested in understanding the interaction between the real-time, physical implementation of the algorithms and the real-world problem (robot and environment). By utilizing both analog and asynchronous digital circuits to mimic similar computations in neural systems, we envision very low power VLSI implementations suitable for providing practical solutions for spatial navigation in micro-aerial vehicles.
    URI
    http://hdl.handle.net/1903/13671
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility