Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    APPLICATION OF NEURAL NETWORKS TO EMULATION OF RADIATION PARAMETERIZATIONS IN GENERAL CIRCULATION MODELS

    Thumbnail
    View/Open
    Belochitski_umd_0117E_13449.pdf (12.31Mb)
    No. of downloads: 373

    Date
    2012
    Author
    Belochitski, Alexei
    Advisor
    Baer, Ferdinand
    Metadata
    Show full item record
    Abstract
    A novel approach based on using neural network (NN) techniques for approximation of physical components of complex environmental systems has been applied and further developed in this dissertation. A new type of a numerical model, a complex hybrid environmental model, based on a combination of deterministic and statistical learning model components, has been explored. Conceptual and practical aspects of developing hybrid models have been formalized as a methodology for applications to climate modeling and numerical weather prediction. The approach uses NN as a machine or statistical learning technique to develop highly accurate and fast emulations for model physics components/parameterizations. The NN emulations of the most time consuming model physics components, short and long wave radiation (LWR and SWR) parameterizations have been combined with the remaining deterministic components of a general circulation model (GCM) to constitute a hybrid GCM (HGCM). The parallel GCM and HGCM simulations produce very similar results but HGCM is significantly faster. The high accuracy, which is of a paramount importance for the approach, and a speed-up of model calculations when using NN emulations, open the opportunity for model improvement. It includes using extended NN ensembles and/or more frequent calculations of full model radiation resulting in an improvement of radiation-cloud interaction, a better consistency with model dynamics and other model physics components. First, the approach was successfully applied to a moderate resolution (T42L26) uncoupled NCAR Community Atmospheric Model driven by climatological SST for a decadal climate simulation mode. Then it has been further developed and subsequently implemented into a coupled GCM, the NCEP Climate Forecast System with significantly higher resolution (T126L64) and time dependent CO2 and tested for decadal climate simulations, seasonal prediction, and short- to medium term forecasts. The developed highly accurate NN emulations of radiation parameterizations are on average one to two orders of magnitude faster than the original radiation parameterizations. The NN approach was extended by introduction of NN ensembles and a compound parameterization with quality control of larger errors. Applicability of other statistical learning techniques, such as approximate nearest neighbor approximation and random trees, to emulation of model physics has also been explored
    URI
    http://hdl.handle.net/1903/13056
    Collections
    • Atmospheric & Oceanic Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility