Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a CAD Model Simplification Framework for Finite Element Analysis

    Thumbnail
    View/Open
    Russ_umd_0117N_12941.pdf (3.415Mb)
    No. of downloads: 6613

    Date
    2012
    Author
    Russ, Brian Henry
    Advisor
    Gupta, Satyandra K
    Metadata
    Show full item record
    Abstract
    Analyzing complex 3D models using finite element analysis software requires suppressing features/parts that are not likely to influence the analysis results, but may significantly improve the computational performance both in terms of mesh size and mesh quality. The suppression step often depends on the context and application. Currently, most analysts perform this step manually. This step can take a long time to perform on a complex model and can be tedious in nature. The goal of this thesis was to generate a simplification framework for both part and assembly CAD models for finite element analysis model preparation. At the part level, a rule-based approach for suppressing holes, rounds, and chamfers is presented. Then a tool for suppressing multiple specified part models at once is described at the assembly level. Upon discussion of the frameworks, the tools are demonstrated on several different models to show the complete approach and the computational performances. The work presented in this thesis is expected to significantly reduce the manual time consuming activities within the model simplification stage. This is accomplished through multiple feature/part suppression compared to the industry standard of suppressing one feature/part at a time. A simplified model speeds up the overall analysis, reducing the meshing time and calculation of the analysis values, while maintaining and on occasion improving the quality of the analysis.
    URI
    http://hdl.handle.net/1903/12447
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility