Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EXPERIMENTAL AND NUMERICAL STUDIES OF DRILL-STRING DYNAMICS

    Thumbnail
    View/Open
    Liao_umd_0117E_12713.pdf (9.759Mb)
    No. of downloads: 4253

    Date
    2011
    Author
    Liao, Chien-Min
    Advisor
    Balachandran, Balakumar
    Metadata
    Show full item record
    Abstract
    A drill string is the transmission component of rotary drill-rig system used for mining petroleum and natural gas resources. The drill-string system is essentially a long slender structure whose length can be in kilometers. Additionally, the drill-string is subject to discontinuous forces from interactions with the wellbore, which can cause erratic torsion oscillations and stick-slip motions. Here, a unique scaled experimental apparatus has been constructed to understand the dynamics of one section of the drill-string subjected to stick-slip interactions with an outer shell. In both the experimental and modeling efforts, the drill-string system is studied as a slender rod with large discs on either end, with the bottom disc being enclosed within a shell, which is representative of a borehole. The experimental setup allows for studies of stick-slip interactions between a drill-string like system and an outer shell, unlike the prior studies. A series of careful experiments are conducted with special attention to parameters such as the drive speed, the mass imbalance, and the nature of contact between the bottom disc and the outer shell. The experimental results indicate that the rotor motions can be divided into different phases, with each phase being characterized by its own unique features that include bumping, sticking, slipping, and rolling characteristics. In order to gain insights into the drill-string dynamics, reduced-order models have been developed inclusive of a novel drill-string wellbore force-interaction model that can account for stick-slip behavior. Both the experimental observations and model predictions are found to be in agreement, in terms of the system dynamics. Furthermore, parametric studies have been conducted and the findings are presented in the form of experimental and numerical simulation results, and the qualitative changes observed in the dynamics are discussed. These findings suggest that the drill-string curvature and contact friction plays an important role in determining the present of erratic motions. This dissertation effort provides clues to how the drive speed can be used as a control parameter to move the system out of regions of undesired dynamics and how the drill-string motions can be influenced to keep them close to the borehole center.
    URI
    http://hdl.handle.net/1903/12269
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility