Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    FLY-EAR INSPIRED MINIATURE SENSOR SYSTEM FOR TWO-DIMENSIONAL SOUND SOURCE LOCALIZATION

    Thumbnail
    View/Open
    Lisiewski_umd_0117N_12360.pdf (6.612Mb)
    No. of downloads: 1034

    Date
    2011
    Author
    Lisiewski, Andrew Paul
    Advisor
    Yu, Miao
    Metadata
    Show full item record
    Abstract
    A micro-scale sound localization sensor is developed and studied in this thesis to address the fundamental challenge of miniaturizing sound localization systems. When miniaturizing a microphone array, there is a critical size limitation at which the array will be unable to localize the sound source in a discernible manner. However, a solution to this dilemma came about when studying the hearing mechanisms of a particular fly, known as Ormia ochracea. Background research into the hearing mechanisms of the fly found that it can accurately locate a sound source even though its eardrums are separated by a distance of only 500 μm. The fly's exceptional directional hearing capability has been linked to a distinct mechanical coupling between its two eardrums, which helps amplify minute directional cues. Inspired by the remarkable hearing capabilities of the fly's micro-scale ear, researchers have sought to develop micro-scale sensors to mimic the fly's ear. One limitation of simply imitating the fly's ear is that the fly is only capable of localizing a sound source in one dimension. In this thesis work, the knowledge gained from understanding the fly ear mechanism is applied to achieve the goal of developing a micro-scale sound localization sensor capable of sound source localization in two dimensions. In this thesis, for the first time, micro-scale fly-ear inspired sensor devices employing three or four coupled membranes have been designed. Reduced-order models have been developed to achieve a fundamental understanding of the performance of each sensor design. Furthermore, a micro-scale sensor device incorporating three mechanically coupled membranes arranged in an equilateral triangular configuration has been successfully developed. Experimental study of the sensor device incorporated with a low coherence fiber optic interferometric detection system has suggested that the micro-scale fly-ear inspired sensor can achieve a much improved performance in terms of phase differences and directional sensitivities when compared to a similar sized microphone array constructed with separate microphones. In addition, localization techniques have been developed to best use the fly-ear inspired sound localization sensors. Future work is suggested to incorporate this sensor system with a fully autonomous robot to improve robot homing and navigation.
    URI
    http://hdl.handle.net/1903/12077
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility