Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EFFECTS OF UNMODELED LATENT CLASSES ON MULTILEVEL GROWTH MIXTURE ESTIMATION IN VALUE-ADDED MODELING

    Thumbnail
    View/Open
    Yumoto_umd_0117E_12486.pdf (3.498Mb)
    No. of downloads: 598

    Date
    2011
    Author
    Yumoto, Futoshi
    Advisor
    Hancock, Gregory R
    Mislevy, Robert J
    Metadata
    Show full item record
    Abstract
    Fairness is necessary to successful evaluation, whether the context is simple and concrete or complex and abstract. Fair evaluation must begin with careful data collection, with clear operationalization of variables whose relationship(s) will represent the outcome(s) of interest. In particular, articulating what it is in the data that needs to be modeled, as well as the relationships of interest, must be specified before conducting any research; these two features will inform both study design and data collection. Heterogeneity is a key characteristic of data that can complicate the data collection design, and especially analysis and interpretation, interfering with or influencing the perception of the relationship(s) that the data will be used to investigate or evaluate. However, planning for, and planning to account for, heterogeneities in data are also critical to the research process, to support valid interpretation of results from any statistical analysis. The multilevel growth mixture model is a new analytic method specifically developed to accommodate heterogeneity so as to minimize the effect of variability on precision in estimation and to reduce bias that may arise in hierarchical data. This is particularly important in the Value Added Model context - where decisions and evaluations about teaching effectiveness are made, because estimates could be contaminated, biased, or simply less precise when data are modeled inappropriately. This research will investigate the effects of un-accounted for heterogeneity at level 1 on the precision of level-2 estimates in multilevel data utilizing the multilevel growth mixture model and multilevel linear growth model.
    URI
    http://hdl.handle.net/1903/11930
    Collections
    • Human Development & Quantitative Methodology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility