TOBACCO MOSAIC VIRUS BASED THREE DIMENSIONAL ANODES FOR LITHIUM ION BATTERIES

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2011

Citation

DRUM DOI

Abstract

Silicon and tin are promising anodic materials with both the high gravimetric

and volumetric capacities for the next generation lithium-ion batteries. To prevent silicon or tin electrodes from a structure failure due to the volume change during lithiation and delithiation, a genetically modified Tobacco mosaic virus (TMV1cys) template is used to fabricate a 3D current collector for the silicon or tin electrode. The 3D current collector can effectively enhance the stabilities of the silicon or tin anodes. The TMV1cys particle can vertically self assemble onto the metal (i.e. Au, Ni, Fe) surfaces in a buffer solution ( PH=7 ). The abundant cysteine-derived thiol groups on the outer surface of the TMV1cys particle can react with metals to form near-covalent bonds. Thus it is very simple to form a 3D current collector by reducing metal such as nickel onto the TMV1cys surface by an electroless metal deposition.

The 3D structure increases the electrode surface area by 10-fold. In order to

investigate the effect of the 3D structure on the silicon anode, a physical vapor

deposition methodology is used to deposit silicon onto the 3D current collector to form a nickel-silicon core-shell nano-rod anode. The abundant free spaces in the electrode accommodate the volume change during cycling and thus the cycleability of the silicon anode is greatly enhanced. The retention capacity at 1C is more than 1100 mAh/g after 340 cycles. Furthermore, a simple electrodeposition method is used to replace the complex physical vapor deposition methodology to make a uniform silicon deposition on the 3D current collector. The electrodeposition methodology is also used to prepare a tin anode. The electrodeposited silicon anode has comparable performance to those silicon anodes prepared by the physical vapor deposition technique. In order to enhance the electrochemical kinetics in silicon anode, the phosphorus doped n-type silicon is used to replace the pure silicon for preparing a high-rate-performance 3D silicon anode. Since the electrochemical reactions take place on the interface between the silicon and the electrolyte, the n-type silicon provides a quicker diffusion path for the involved electrons. The rate capability of the silicon anode has been increased and the capacity difference enlarges with the

increasing current density.

Notes

Rights