Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cometary Escape in the Restricted Circular Planar Three Body Problem

    Thumbnail
    View/Open
    Galante_umd_0117E_12018.pdf (1.064Mb)
    No. of downloads: 928

    Date
    2011
    Author
    Galante, Joseph Robert
    Advisor
    Kaloshin, Vadim Yu
    Metadata
    Show full item record
    Abstract
    The classical principle of least action says that orbits of mechanical systems extremize action; an important subclass are those orbits that minimize action. This principle is utilized along with Aubry-Mather theory to construct regions of instability for a certain three body problem, given by a Hamiltonian system of two degrees of freedom. In principle, these methods can be applied to construct instability regions for a variety of Hamiltonian systems with $2$ degrees of freedom. The Hamiltonian model considered in this thesis describes the dynamics of a Sun-Jupiter-Comet system and under some simplifying assumptions, the existence of instabilities for the orbit of the comet is shown. In particular it is shown that a comet which starts close to an orbit in the shape of an ellipse of eccentricity $e=0.66$ can increase in eccentricity to beyond $e=1$. Furthermore, there exist ejection orbits for the comet. Such orbits are initially well within the range of our solar system. This might give an indication of why most objects rotating around the Sun in our solar system have relatively low eccentricity. Several new theoretical tools are introduced in this thesis as well. The most notable is a checkable sufficient condition to verify that an exact area preserving map is an exact area preserving twist map in a certain coordinate system. This coordinate system is constructed by ``spreading the cumulative twist'' which arises from the long term dynamics of system. Many of the results of the thesis are `computer assisted' and utilize recent advances in rigorous numerical integration. It is through the application of these advances in computing that it has become possible to state deep results for realistic solar systems. This has been the dream of many since humans first observed the stars so long ago.
    URI
    http://hdl.handle.net/1903/11641
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility