Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SEASONAL DEVELOPMENT OF DOLLAR SPOT EPIDEMICS IN MARYLAND AND NITROGEN EFFECTS ON FUNGICIDE PERFORMANCE IN CREEPING BENTGRASS

    Thumbnail
    View/Open
    Ryan_umd_0117N_12211.pdf (1.422Mb)
    No. of downloads: 1212

    Date
    2011
    Author
    Ryan, Chris Patrick
    Advisor
    Dernoeden, Peter H
    Metadata
    Show full item record
    Abstract
    Dollar spot (Sclerotinia homoeocarpa) is a common and destructive disease of creeping bentgrass (Agrostis stolonifera). The frequency and severity of dollar spot epidemics has not been quantified and there are no effective predictive models. High rates of nitrogen (N) reduce dollar spot injury, but low N rates applied in summer have not been assessed for disease suppression. Field studies were conducted from 2008 to 2010 with the following objectives: a) to describe the relationship among season, environmental factors and the severity of dollar spot epidemics in six creeping bentgrass cultivars; b) to evaluate six water soluble N sources applied at a low rate (7.3 kg N ha<super>-1</super>) in summer for their impact on dollar spot severity; and c) to assess the performance of low fungicide rates tank-mixed with N on dollar spot severity. Two epidemics were observed each year between spring and mid- autumn, with the second being most severe. A third, late autumn epidemic also was observed in each year. The first epidemic in May was effectively predicated using a degree day model having a biofix date of 1 April and a 15°C base temperature. Ammonium sulfate was most consistently effective in reducing dollar spot injury, but caused foliar injury. Tank-mixing a low chlorothalonil rate with N generally reduced fungicide efficacy.
    URI
    http://hdl.handle.net/1903/11573
    Collections
    • Plant Science & Landscape Architecture Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility