Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • University Libraries
    • Library Staff Research Works
    • Library Staff Research Works
    • View Item
    •   DRUM
    • University Libraries
    • Library Staff Research Works
    • Library Staff Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Regulation of the biosynthesis of 4,7,10,13,16-docosapentaenoic acid

    Thumbnail
    View/Open
    BiochemicalJournal3260425.pdf (299.0Kb)
    No. of downloads: 481

    Date
    1997
    Author
    Mohammed, B. S.
    Luthria, D. L.
    Baykousheva, S. P.
    Sprecher, H.
    Citation
    Mohammed, B. S., D. L. Luthria, S. P. Bakousheva, and H. Sprecher. 1997. Regulation of the biosynthesis of 4,7,10,13,16-docosapentaenoic acid. Biochemical Journal 326:425-430
    Metadata
    Show full item record
    Abstract
    It is now established that fatty acid 7,10,13,16-22:4 is metabolized into 4,7,10,13,16-22:5 as follows: 7,10,13,16-22:4-->9,12,15, 18-24:4-->6,9,12,15,18-24:5-->4,7,10,13,16-22:5. Neither C24 fatty acid was esterified to 1-acyl-sn-glycero-3-phosphocholine (1-acyl-GPC) by microsomes, whereas the rates of esterification of 4, 7,10,13,16-22:5, 7,10,13,16-22:4 and 5,8,11,14-20:4 were respectively 135, 18 and 160 nmol/min per mg of microsomal protein. About four times as much acid-soluble radioactivity was produced when peroxisomes were incubated with [3-14C]9,12,15,18-24:4 compared with 6,9,12,15,18-24:5. Only [1-14C]7,10,13,16-22:4 accumulated when [3-14C]9,12,15,18-24:4 was the substrate, but both 4,7,10,13,16-22:5 and 2-trans-4,7,10,13,16-22:6 were produced from [3-14C]6,9,12,15, 18-24:5. When the two C24 fatty acids were incubated with peroxisomes, microsomes and 1-acyl-GPC there was a decrease in the production of acid-soluble radioactivity from [3-14C]6,9,12,15, 18-24:5, but not from [3-14C]9,12,15,18-24:4. The preferential fate of [1-14C]4,7,10,13,16-22:5, when it was produced, was to move out of peroxisomes for esterification into the acceptor, whereas only small amounts of 7,10,13,16-22:4 were esterified. By using 2H-labelled 9,12,15,18-24:4 it was shown that, when 7,10,13,16-22:4 was produced, its primary metabolic fate was degradation to yield esterified arachidonate. Collectively, the results show that an inverse relationship exists between rates of peroxisomal beta-oxidation and of esterification into 1-acyl-GPC by microsomes. Most importantly, when a fatty acid is produced with its first double bond at position 4, it preferentially moves out of peroxisomes for esterification to 1-acyl-GPC by microsomes, rather than being degraded further via a cycle of beta-oxidation that requires NADPH-dependent 2,4-dienoyl-CoA reductase.
    URI
    http://hdl.handle.net/1903/11410
    Collections
    • Library Staff Research Works

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility