Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adjusting the Rayleigh Quotient in Semiorthogonal Lanczos Methods

    Thumbnail
    View/Open
    CS-TR-4246.ps (113.6Kb)
    No. of downloads: 174

    Auto-generated copy of CS-TR-4246.ps (137.8Kb)
    No. of downloads: 713

    Date
    2001-05-10
    Author
    Stewart, G. W.
    Metadata
    Show full item record
    Abstract
    In a semiorthogonal Lanczos algorithm, the orthogonality of the Lanczos vectors is allowed to deteriorate to roughly the square root of the rounding unit, after which the current vectors are reorthogonalized. A theorem of Simon \cite{simo:84} shows that the Rayleigh quotient\,---\,i.e., the tridiagonal matrix produced by the Lanczos recursion\,---\,contains fully accurate approximations to the Ritz values in spite of the lack of orthogonality. Unfortunately, the same lack of orthogonality can cause the Ritz vectors to fail to converge. It also makes the classical estimate for the residual norm misleadingly small. In this note we show how to adjust the Rayleigh quotient to overcome this problem. (Cross-referenced as UMIACS-TR-2001-31)
    URI
    http://hdl.handle.net/1903/1132
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility