Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A GENERIC RELIABILITY ANALYSIS AND DESIGN FRAMEWORK WITH RANDOM PARAMETER, FIELD, AND PROCESS VARIABLES

    Thumbnail
    View/Open
    Xi_umd_0117E_11587.pdf (2.779Mb)
    No. of downloads: 1197

    Date
    2010
    Author
    Xi, Zhimin
    Advisor
    Youn, Byeng D
    Metadata
    Show full item record
    Abstract
    This dissertation aims at developing a generic reliability analysis and design framework that enables reliability prediction and design improvement with random parameter, field, and process variables. The capability of this framework is further improved by predicting and managing reliability even with a dearth of data that can be used to characterize random variables. To accomplish the research goal, three research thrusts are set forth. First, advanced techniques are developed to characterize the random field or process. The fundamental idea of these techniques is to model the random field or process with a set of important field signatures and random variables. These techniques enable the use of random parameter, field, and process variables for reliability analysis and design even with a dearth of data. Second, a generic reliability analysis framework is proposed to accurately assess system reliability in the presence of random parameter, field, and process variables. An advanced probability analysis technique, the Eigenvector Dimension Reduction (EDR) method, is developed by integrating the Dimension Reduction (DR) method with three proposed improvements: 1) an eigenvector sampling approach to obtain statistically independent samples over a random space; 2) a Stepwise Moving Least Square (SMLS) method to accurately approximate system responses over a random space; and 3) a Probability Density Function (PDF) generation method to accurately approximate the PDF of system responses for reliability analysis. Third, a generic Reliability-Based Design Optimization (RBDO) framework is developed to solve engineering design problems with random parameter, field, and process variables. This design framework incorporates the EDR method into RBDO. To illustrate the effectiveness of the developed framework, many numerical and engineering examples are employed to conduct the reliability analysis and RBDO with random parameter, field, and process variables. This dissertation demonstrates that the developed framework is very accurate and efficient for the reliability analysis and RBDO of engineering products and processes.
    URI
    http://hdl.handle.net/1903/10925
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility