Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Applying Mathematics to Physics and Engineering: Symbolic Forms of the Integral

    Thumbnail
    View/Open
    Jones_umd_0117E_11502.pdf (910.0Kb)
    No. of downloads: 2995

    Date
    2010
    Author
    Jones, Steven Robert
    Advisor
    Campbell, Patricia F
    Metadata
    Show full item record
    Abstract
    A perception exists that physics and engineering students experience difficulty in applying mathematics to physics and engineering coursework. While some curricular projects aim to improve calculus instruction for these students, it is important to specify where calculus curriculum and instructional practice could be enhanced by examining the knowledge and understanding that students do or do not access after instruction. This qualitative study is intended to shed light on students' knowledge about the integral and how that knowledge is applied to physics and engineering. In this study, nine introductory-level physics and engineering students were interviewed about their understanding of the integral. They were interviewed twice, with one interview focused on and described as problems similar to those encountered in a mathematics class and the other focused on and described as problems similar to those found in a physics class. These students provided evidence for several "symbolic forms" that may exist in their cognition. Some of these symbolic forms resembled the typical interpretations of the integral: an area, an addition over several pieces, and an anti-derivative process. However, unique features of the students' interpretations help explain how this knowledge has been compiled. Furthermore, the way in which these symbolic forms were employed throughout the interviews shows a context-dependence on the activation of this knowledge. The symbolic forms related to area and anti-derivatives were more common and productive during the mathematics interview, while less common and less productive during the physics interview. By contrast, the symbolic form relating to an addition over several pieces was productive for both interview sessions, suggesting its general utility in understanding the integral in various contexts. This study suggests that mathematics instruction may need to provide physics and engineering students with more opportunities to understand the integral as an addition over several pieces. Also, it suggests that physics and engineering instruction may need to reiterate the importance, in physics and engineering contexts, of the integral as an addition over several pieces in order to assist students in applying their knowledge about the integral.
    URI
    http://hdl.handle.net/1903/10848
    Collections
    • Teaching, Learning, Policy & Leadership Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility