Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanocrystalline diamond thin film integration in AlGaN/GaN high electron mobility transistors and 4H-SiC heterojunction diodes

    Thumbnail
    View/Open
    Tadjer_umd_0117E_11221.pdf (15.15Mb)
    No. of downloads: 2905

    Date
    2010
    Author
    Tadjer, Marko
    Advisor
    Melngailis, John
    Metadata
    Show full item record
    Abstract
    The extremely high thermal conductivity and mechanical hardness of diamond would make it the natural choice for device substrates when large area wafer production becomes possible. Until this milestone is achieved, people could utilize nanocrystalline diamond (NCD) thin films grown by chemical vapor deposition (CVD). A topside thermal contact could be pivotal for providing stable device characteristics in the high power, high temperature, and high switching frequency device operating regime that next-generation power converter circuits will mandate. This work explores thermal and electrical benefits offered by NCD films to wide bandgap semiconductor devices. Reduction of self-heating effects by integrating NCD thin films near the device channel of AlGaN/GaN high electron mobility transistors (HEMTs) is presented. The NCD layers provide a high thermal conductivity path for the reduction of hot electron dispersion, a phenomenon caused by self-heating and detrimental to the continuous operation of GaN devices in power switching circuits. Recent advances in diamond doping have made it possible to think of this material as a very wide bandgap semiconductor (5.5 eV for ideal diamond). A few unique properties, such as negative electron affinity (&chi; = -0.2 eV for H-terminated diamond), make this material very interesting. Using H-terminated NCD, a heterojunction with 4H-SiC has been developed. Undoped and B-doped NCD were deposited on both n<super>-</super> and p<super>-</super> 4H-SiC epilayers. Different metals were studied to provide an Ohmic contact to the NCD layer. I-V measurements on p<super>+</super> NCD / n<super>-</super> 4H-SiC p-n junctions indicated Schottky rectifying behavior with a turn-on voltage of around 0.2 V. The current increased over 8 orders of magnitude with an ideality factor of 1.17 at 30 &deg;C. Ideal energy-band diagrams suggested a possible conduction mechanism for electron transport from the SiC conduction band to either the valence band or Boron acceptor level of the NCD film. Cathodoluminescence and thermally stimulated current methods were employed to study the deep level assisted conduction in this heterojunction. Applications as a simultaneous UV-transparent optical and Schottky electrical contact to 4H-SiC are discussed.
    URI
    http://hdl.handle.net/1903/10378
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility