Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search for Quantum Gravity with IceCube and High Energy Atmospheric Neutrinos

    Thumbnail
    View/Open
    Huelsnitz_umd_0117E_11140.pdf (4.491Mb)
    No. of downloads: 1722

    Date
    2010
    Author
    Huelsnitz, Warren
    Advisor
    Hoffman, Kara
    Metadata
    Show full item record
    Abstract
    IceCube is a cubic-kilometer neutrino telescope nearing completion in the South Pole Ice. Designed to detect astrophysical neutrinos from 100 GeV to about an EeV, it will contribute to the fields of high energy astrophysics, particle physics, and neutrino physics. This analysis looks at the flux of atmospheric neutrinos detected by IceCube while it operated in a partially-completed, 40-string configuration, from April 2008 to May 2009. From this data set, a sample of about 20,000 up-going atmospheric muon neutrino events with negligible background was extracted using Boosted Decision Trees. A discrete Fourier transform method was used to constrain a directional asymmetry in right ascension. Constraints on certain interaction coefficients from the Standard Model Extension were improved by three orders of magnitude, relative to prior experiments. The event sample was also used to unfold the atmospheric neutrino spectrum at its point of origin, and seasonal and systematic variations in the atmospheric muon neutrino flux were studied. A likelihood method was developed to constrain perturbations to the energy and zenith angle dependence of the atmospheric muon neutrino flux that could be due to Lorentz-violating oscillations or decoherence of neutrino flavor. Such deviations could be a signature of quantum gravity in the neutrino sector. The impact of systematic uncertainties in the neutrino flux and in the detector response on such a likelihood analysis were examined. Systematic uncertainties that need to be reduced in order to use a two-dimensional likelihood analysis to constrain phenomenological models for Lorentz or CPT violating neutrino oscillations were identified.
    URI
    http://hdl.handle.net/1903/10308
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility