Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unified Datacenter Power Management Considering On-Chip and Air Temperature Constraints

    Thumbnail
    View/Open
    datacenter_power_management_edited.pdf (764.9Kb)
    No. of downloads: 890

    Date
    2010
    Author
    Shi, Bing
    Srivastava, Ankur
    Advisor
    Srivastava, Ankur
    Metadata
    Show full item record
    Abstract
    The current approaches for datacenter power management (workload scheduling, CPU speed control, etc) focus primarily on maintaining the air temperature surrounding servers to be within the manufacturer specified constraint. This is problematic since several CPUs may still be violating the on-chip thermal constraint thereby leading to reliability loss. The primary objective of this work is to develop a unified approach for datacenter power optimization (by controlling the CPU speeds) which accounts for both the silicon level temperature of the VLSI components such as CPUs and the air temperature that directly impacts the reliability of other devices such as disks, and also the performance delivered. Our algorithm follows a two step approach: optimally solving a convex approximation that assigns continuous frequency values to all CPUs and a discretization step for legalization of the assigned frequencies. The experimental results indicate that our method guarantees both on-chip CPU and off-chip air temperature to be within temperature constraints. However, the traditional approach of constraining only air temperature will result in on-chip CPU temperature violation on about 40% of the CPUs, or 42% more power consumption to pull the CPU temperature back within constraint by increasing the HVAC cooling.
    URI
    http://hdl.handle.net/1903/10060
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility