A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Compression and Multi-Spectral Sensing for Video Based Physiological Monitoring
    (2022) Steinhauser, Carl Frederick; Wu, Min; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Remote physiological monitoring is an active area of research that extends monitoring capabilities traditionally found in a clinical setting towards the home, telehealth, and beyond. In particular, there is interest in leveraging consumer electronic devices for sensing physiological characteristics such as heart rate, heart rate variability, and blood oxygen saturation. This thesis focuses on enhancing the understanding and usage of the sensing component for these applications to improve the performance and quality of cardio-physiological monitoring. First, a close relationship between the color spaces used for video compression and the color projection planes commonly used for heart rate estimation is identified. % that results in higher compression of the physiological signal. The study demonstrates the impact of this observation on real and synthetic data to provide a foundation to guide future video coding to optimize its configurations to better preserve the heart rate signal for health related applications. Second, an investigation with a commercial-off-the-shelf (COTS) multi-spectral sensor is presented with key observations related to the sampling rate, exposure settings, and multi-channel processing. These observations will enable better usage of the sensor for future studies and data collections that leverage the more precise spectral measurements from the multi-spectral sensor compared to standard RGB cameras.
  • Thumbnail Image
    Item
    ELECTROCHEMICAL COMPRESSION WITH ION EXCHANGE MEMBRANES FOR AIR CONDITIONING, REFRIGERATION AND OTHER RELATED APPLICATIONS
    (2017) Tao, Ye; Wang, Chunsheng; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The refrigeration industry in the US are facing two main challenges. First of all, the phase down of HFCs in the future would require industries to seek alternative refrigerants which do not contribute to global warming. Secondly, the mechanical compressor in the small scale cooling system with a large energy impact is reaching its limitation due to heat transfer and manufacturing tolerances. Therefore there is an urgent need to develop a highly efficient compression process that works with environmentally friendly refrigerants. And the electrochemical compressor is developed to meet these requirement based on the following reasons. First of all, the electrochemical compressor can achieve an isothermal compression efficiency of greater than 90%. It also operates without moving parts, lubrication and noise. Most importantly, the compressor works with environmentally friendly refrigerants. In this thesis, three distinct electrochemical compression processes were studied. The first study is focused on modeling a metal hydride heat pump driven by electrochemical hydrogen compressor. The performance of the cooling-generating desorption reactor, the heating-generating absorption reactor, as well as the whole system were demonstrated. The results showed the superior performance of electrochemical hydrogen compressor over mechanical compressor in the system with optimized operating condition and COP. The second study demonstrated the feasibility of electrochemical ammonia compression with hydrogen as a carrier gas. The reaction mechanisms and the compression principle were verified and the compression efficiency was measured to be greater than 90%. The technology can be applied to ammonia vapor compression refrigeration cycle and ammonia storage. The third study is about developing and studying the electrochemical CO2 compression process with oxygen as a carrier gas. The reaction mechanism was verified and compared for both Pt and CaRuO3 electro-catalysts. And the latter was selected due to better CO2 and O2 absorption. The technology can potentially be applied in carbon dioxide transcritical refrigeration cycle and carbon capture. In conclusion, the electrochemical compression is a promising technology with higher compression efficiency and would bring a revolutionary change to the compressor engineering industry and global refrigeration and air conditioning market. It can also be used in fuel storage and separation based on the selective properties of the ion exchange membrane.
  • Thumbnail Image
    Item
    COMPRESSIVE QUANTIZATION FOR SCALABLE CLOUD RADIO ACCESS NETWORKS
    (2016) Ma, Hang; Liu, K. J. Ray; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    With the proliferation of new mobile devices and applications, the demand for ubiquitous wireless services has increased dramatically in recent years. The explosive growth in the wireless traffic requires the wireless networks to be scalable so that they can be efficiently extended to meet the wireless communication demands. In a wireless network, the interference power typically grows with the number of devices without necessary coordination among them. On the other hand, large scale coordination is always difficult due to the low-bandwidth and high-latency interfaces between access points (APs) in traditional wireless networks. To address this challenge, cloud radio access network (C-RAN) has been proposed, where a pool of base band units (BBUs) are connected to the distributed remote radio heads (RRHs) via high bandwidth and low latency links (i.e., the front-haul) and are responsible for all the baseband processing. But the insufficient front-haul link capacity may limit the scale of C-RAN and prevent it from fully utilizing the benefits made possible by the centralized baseband processing. As a result, the front-haul link capacity becomes a bottleneck in the scalability of C-RAN. In this dissertation, we explore the scalable C-RAN in the effort of tackling this challenge. In the first aspect of this dissertation, we investigate the scalability issues in the existing wireless networks and propose a novel time-reversal (TR) based scalable wireless network in which the interference power is naturally mitigated by the focusing effects of TR communications without coordination among APs or terminal devices (TDs). Due to this nice feature, it is shown that the system can be easily extended to serve more TDs. Motivated by the nice properties of TR communications in providing scalable wireless networking solutions, in the second aspect of this dissertation, we apply the TR based communications to the C-RAN and discover the TR tunneling effects which alleviate the traffic load in the front-haul links caused by the increment of TDs. We further design waveforming schemes to optimize the downlink and uplink transmissions in the TR based C-RAN, which are shown to improve the downlink and uplink transmission accuracies. Consequently, the traffic load in the front-haul links is further alleviated by the reducing re-transmissions caused by transmission errors. Moreover, inspired by the TR-based C-RAN, we propose the compressive quantization scheme which applies to the uplink of multi-antenna C-RAN so that more antennas can be utilized with the limited front-haul capacity, which provide rich spatial diversity such that the massive TDs can be served more efficiently.
  • Thumbnail Image
    Item
    Biomechanics of the Intervertebral Disc: The Effects of Load History on Mechanical Behavior
    (2007-06-20) Gabai, Adam Shabtai; Hsieh, Adam; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Degenerative disc disease is associated with back pain, and can be a debilitating disorder. In addition to the biological contributions of genetics and aging, mechanical factors have been implicated in accelerating the progression of disc degeneration. Two studies were performed in order to explore the effects of various loading conditions on disc biomechanics. The first study explores the effects of compressive historical loads and disc hydration on subsequent creep loading and recovery. The second study investigates the restorative powers of creep distraction between compressive loading periods. In both cases three commonly applied mathematical models were employed to characterize disc behavior and the effectiveness of each model was validated. The studies confirm that hydration level has a significant impact on disc stiffness and time dependent behavior. Distraction and conditioning phases are shown to have a significant impact on hydration level and thus subsequent mechanical behavior.