A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Fabrication of a Miniature Paper-Based Electroosmotic Actuator
    (MDPI, 2016-11-08) Sritharan, Deepa; Smela, Elisabeth
    A voltage-controlled hydraulic actuator is presented that employs electroosmotic fluid flow (EOF) in paper microchannels within an elastomeric structure. The microfluidic device was fabricated using a new benchtop lamination process. Flexible embedded electrodes were formed from a conductive carbon-silicone composite. The pores in the layer of paper placed between the electrodes served as the microchannels for EOF, and the pumping fluid was propylene carbonate. A sealed fluid-filled chamber was formed by film-casting silicone to lay an actuating membrane over the pumping liquid. Hydraulic force generated by EOF caused the membrane to bulge by hundreds of micrometers within fractions of a second. Potential applications of these actuators include soft robots and biomedical devices.
  • Thumbnail Image
    Item
    Characterization and Analysis of Extensile Fluidic Artificial Muscles
    (MDPI, 2021-01-30) Garbulinski, Jacek; Balasankula, Sai C.; Wereley, Norman M.
    Extensile fluidic artificial muscles (EFAMs) are soft actuators known for their large ranges of extension, low weight, and blocked forces comparable to those of pneumatic cylinders. EFAMs have yet to be studied in a way that thoroughly focuses on their manufacturing, experimental characterization, and modeling. A fabrication method was developed for production of two EFAMs. The quasi-static axial force response of EFAMs to varying displacement was measured by testing two specimens under isobaric conditions over a pressure range of 103.4–517.1 kPa (15–75 psi) with 103.4 kPa (15 psi) increments. The muscles were characterized by a blocked force of 280 N and a maximum stroke of 98% at 517.1 kPa (75 psi). A force-balance model was used to analyze EFAM response. Prior work employing the force-balance approach used hyper-elastic constitutive models based on polynomial expressions. In this study, these models are validated for EFAMs, and new constitutive models are proposed that better represent the measured stress values of rubber as a function of strain. These constitutive models are compared in terms of accuracy when estimating pressure-dependent stress–strain relationships of the bladder material. The analysis demonstrates that the new hyper-elastic stress models have an error 5% smaller than models previously employed for EFAMs for the same number of coefficients. Finally, the analysis suggests that the new stress functions have smaller errors than the polynomial stress model with the same number of coefficients, guarantee material stability, and are more conservative about the stress values for strains outside of the testing range.