A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Synthesis and characterization of multiferroic thin films
    (2008-07-02) Lim, Sung Hwan; Salamanca-Riba, Lourdes; Takeuchi, Ichiro; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Multiferroic materials and multiferroic materials systems which simultaneously exhibit ferroelectricity and magnetism have attracted great attention because of their exotic physical properties and their potential applications which utilize coupling of magnetism and ferroelectricity. The goal of this thesis was to study multiferroic materials systems in thin film and multilayer forms in order to explore the possibility of fabricating room temperature thin film devices. In particular, we have focused on two types of multiferroic materials systems: 1) intrinsic multiferroic/magnetoelectric thin film materials and 2) magnetostrictive/ piezoelectric bilayer systems for investigation of the strain-mediated magnetoelectric (ME) effect. BiFeO3 is an intrinsic multiferroic which displays ferroelectricity and antiferromagnetism at room temperature, and thus of strong interest for ambient device applications. In this thesis, we have extensively investigated the role of microstructure on the properties of BiFeO3 thin films. We studied multiphase formation in Bi-Fe-O thin films, and found that formation of secondary phases such as α-Fe2O3, γ-Fe2O3, and Fe3O4 increased overall saturation magnetization and released the misfit strain of the BiFeO3 grains in the films. We have studied several aspects of the ME effect which are directly relevant to possible novel device applications. Electric field tunable spintronic devices using the ME effect have been proposed. In one such device configuration, the desired effect is electric field tuning of giant magnetoresistance or tunnel magnetoresistance through control of exchange bias via the ME effect. We have investigated the feasibility of such a device using exchange-biased Co/Pt multilayers on Cr2O3 thin films. The strain-mediated ME effect at the interface of magnetostrictive/ piezoelectric bilayers has been widely used to demonstrate magnetic field detection with extremely high sensitivity. Although the overall mechanism of such an effect is known, the details of the bilayer interfaces and how they affect the coupling is not understood. In order to directly observe the strain-mediated ME coupling effect, we fabricated bilayer thin film structures and performed in-situ dynamic observation of magnetic domains while an electric-field was being applied using Lorentz transmission electron microscopy. Electric-field induced motion of magnetic domain boundaries in the magnetostrictive layer was observed for the first time.
  • Thumbnail Image
    Item
    Combinatorial Investigation of Magnetostrictive Materials
    (2007-08-24) Hattrick-Simpers, Jason Ryan; Takeuchi, Ichiro; Wuttig, Manfred; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Combinatorial materials synthesis is a research methodology, which allows one to study a large number of compositionally varying samples simultaneously. We apply this technique in the search for novel multifunctional materials. The work presented here will discuss the combinatorial investigation of novel magnetostrictive materials. In particular, binary Fe-Ga and the ternary Fe-Ga-Al, Fe-Ga-Pd systems are studied. Magnetron co-sputtered composition spread samples of the alloys have been fabricated to study composition dependent trends in magnetostriction. Magnetostriction measurements on all systems studied here have been carried out by optically measuring the deflection of micro-machined cantilever arrays. Measurements of the magnetostriction on binary Fe-Ga thin-films show similar compositional trends as had been reported in bulk systems. The maximum value of magnetostriction observed is 220 ppm, which is comparable to bulk values. A previously unreported minor maximum in magnetostriction as a function of composition has been found for Ga contents of about 4 at%. It is believed that the origin of this minor maximum is related to a peak in the magnetic moment of Fe atoms in Fe-Ga alloys at this composition. We have mapped the Fe-Ga-Pd and Fe-Ga-Al ternary systems. Large regions of the phase diagrams have been mapped out in a single experiment, and the observed magnetostrictive dependence on Ga content matches trends seen in bulk. It was found that the trend of magnetostriction deviated from that of bulk with the inclusion of as little as 1 at% Pd. The addition of up to 10 at % Al to Fe70Ga30 was possible without severe degradation of its magnetostriction.