A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
3 results
Search Results
Item UNDERSTANDING FUNCTIONAL BEHAVIORS OF ORGANOTROPIC TRIPLE NEGATIVE BREAST CANCER CELLS(2023) DeCastro, Ariana Joy; Stroka, Kimberly M; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)11.7% of all cancer cases consist of breast cancer worldwide according to global cancer statistics. Triple negative breast cancer (TNBC) is subtype of breast cancer that has no expression of common hormonal receptors - estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Due to this, TNBC is insensitive to endocrine or molecular targeted therapy and chemotherapy is the most effective treatment. Additionally, TNBC patients have reoccurrence within 3 years of diagnosis. Going further, due to the non-specific targeting of chemotherapy, cancer cells can develop drug resistance. The gold standard does not work in conjunction with microenvironmental factors to reduce disease progression and drug resistance. Not only is this disease lacking in effective treatments but is associated with a health disparity being most prevalent in pre-menopausal and African American women. There is clearlya need to understand the mechanisms of TNBC metastasis because of the impact not only on women in general but on women in historically marginalized communities. A significant innovation in determining cancer treatment is the use of genomic sequencing to identify mutations associated with metastasis. However, tumor heterogeneity puts limitations on fully understanding genomic landscape of TNBC, a highly mutational disease, using sequencing. Further, even when mutations are identified they may not be targetable, or patients may not respond to treatments. While genomic sequencing can be beneficial in improving treatment outcomes, they require further downstream validation of genetic expression to completely understand tumor biology and metastatic progression. This is where understanding the functional behavior of tumor cells with respect to their preferred secondary microenvironment can be advantageous in supplementing genomics data to get a comprehensive understanding of TNBC metastasis. The overall goal of this dissertation is to address this gap by quantifying tumor cell functional behavior and their response to microenvironmental cues. We evaluate three different physical and biochemical behaviors of TNBC tumor cells. In Chapter 3, the effect of TNBC secretome on endothelial barrier properties and function is explored. Chapter 4 quantifies the morphological and migratory phenotypes of brain and bone-seeking TNBC cells in response to ECM protein substrates found in their relevant microenvironments. Lastly, Chapter 5 will quantify the TNBC incorporation in response to brain relevant microenvironmental cues. Quantifying these functional behaviors could provide indicators of brain and bone tropic metastatic behavior and have broader impacts in creating a complete physical profile of organotropic TNBC metastasis.Item Assembly and Combustion Properties of Energetic Mesoparticles(2015) Wei, Boran; Zachariah, Micheal R; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Energetic materials are materials which can release large amounts of energy in a short time interval. When the size of energetic materials is reduced from micro into nanoscale, the reactivity of energetic materials increases dramatically due to increase in intimate contact and faster mass and heat transfer. Finding an efficient way to synthesize energetic nanocomposites has become an import research topic. Here I demonstrate the use of electrospray methods to generate mesostructured microparticles containing nanomaterials and a gas generator. The system was designed for characterization of the size distribution as well as combustion properties. In this thesis, size distribution of the Al/NC mesoparticles is tuned from 0.7-2.0 µm, and the ignition delay is shown significantly decrease (15 ms to 3 ms) compared to nano-size Al. The burn time is also decreased significantly (4036 µs to 366 µs) by using electrospray assembly. This demonstrated that assembly of nanocomponents can significantly impact combustion performance.Item A NEW CLASS OF HYBRID HYDROGELS(2013) Fernandes, Neville Justine; Raghavan, Srinivasa R; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Hybrid hydrogels are a novel way of combining materials with different properties and retaining their individual functionalities within the same composite gel. Here we attempt to demonstrate how this approach can be used to create hydrogels whose morphologies can be altered depending on external stimuli. First we report the creation of hollow hybrid gels which are similar to the previously created solid hybrid gels but have the advantage of a faster and enhanced response to external stimuli. Two stimuli that we have specifically investigated are temperature and solvent composition. We show how to modify the type and extent of response of the gels, i.e. make them shrink or swell, by changing the composition of the polymer as well as the crosslinker within the gel. Thereafter, we also demonstrate how the responses can be manipulated to change the morphology of the hybrid gel itself.