Mechanical Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/2263

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    A FRAMEWORK FOR CREDIBILITY ASSESSMENT OF SUBJECT-SPECIFIC PHYSIOLOGICAL MODELS
    (2022) Parvinian, Bahram; Hahn, Jin-Oh; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Physiological closed-loop controllers and decision support systems are medical devices that enable some degree of automation to meet the needs of patients in resource-limited environments such as critical care and surgical units. Traditional methods of safety and effectiveness evidence generation such as pre-clinical animal and human clinical studies are cost prohibitive and may not fully capture different performance attributes of such complex safety-criticalsystems primarily due to subject variability. In silico studies using subject-specific physiological models (SSPMs) may provide a versatile platform to generate pre-clinical and clinical safety evidence for medical devices and help reduce the size and scope of animal studies and/or clinical trials. To achieve such a goal, the credibility of the SSPMs must be established for the purpose it is intended to serve. While in the past decades significant research has been dedicated towards development oftools and methods for development and evaluation of SSPMs, adoption of such models remains limited, partly due to lack of trust in SSPMs for safety-critical applications. This may be due to a lack of a cohesive and disciplined credibility assessment framework for SSPMs. In this dissertation a novel framework is proposed for credibility assessment of SSPMs. The framework combines various credibility activities in a unified manner to avoid or reduce resource intensive steps, effectively identify model or data limitations, provide direction as to how to address potential model weaknesses, and provide much needed transparency in the model evaluation process to the decision-makers. To identify various credibility activities, the framework is informed by an extensive literature review of more mature modeling spaces focusing on non- SSPMs as well as a literature review identifying gaps in the published work related to SSPMs. The utility of the proposed framework is successfully demonstrated by its application towards credibility assessment of a CO2 ventilatory gas exchange model intended to predict physiological parameters, and a blood volume kinetic model intended to predict changes in blood volume inresponse to fluid resuscitation and hemorrhage. The proposed framework facilitates development of more reliable SSPMs and will result in increased adoption of such models to be used for evaluation of safety-critical medical devices such as Clinical Decision Support (CDS) and Physiological Closed-Loop Controlled (PCLC) systems.
  • Thumbnail Image
    Item
    Computational Foundations for Safe and Efficient Human-Robot Collaboration in Assembly Cells
    (2016) Morato, Carlos W; Gupta, Satyandra K; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Human and robots have complementary strengths in performing assembly operations. Humans are very good at perception tasks in unstructured environments. They are able to recognize and locate a part from a box of miscellaneous parts. They are also very good at complex manipulation in tight spaces. The sensory characteristics of the humans, motor abilities, knowledge and skills give the humans the ability to react to unexpected situations and resolve problems quickly. In contrast, robots are very good at pick and place operations and highly repeatable in placement tasks. Robots can perform tasks at high speeds and still maintain precision in their operations. Robots can also operate for long periods of times. Robots are also very good at applying high forces and torques. Typically, robots are used in mass production. Small batch and custom production operations predominantly use manual labor. The high labor cost is making it difficult for small and medium manufacturers to remain cost competitive in high wage markets. These manufactures are mainly involved in small batch and custom production. They need to find a way to reduce the labor cost in assembly operations. Purely robotic cells will not be able to provide them the necessary flexibility. Creating hybrid cells where humans and robots can collaborate in close physical proximities is a potential solution. The underlying idea behind such cells is to decompose assembly operations into tasks such that humans and robots can collaborate by performing sub-tasks that are suitable for them. Realizing hybrid cells that enable effective human and robot collaboration is challenging. This dissertation addresses the following three computational issues involved in developing and utilizing hybrid assembly cells: - We should be able to automatically generate plans to operate hybrid assembly cells to ensure efficient cell operation. This requires generating feasible assembly sequences and instructions for robots and human operators, respectively. Automated planning poses the following two challenges. First, generating operation plans for complex assemblies is challenging. The complexity can come due to the combinatorial explosion caused by the size of the assembly or the complex paths needed to perform the assembly. Second, generating feasible plans requires accounting for robot and human motion constraints. The first objective of the dissertation is to develop the underlying computational foundations for automatically generating plans for the operation of hybrid cells. It addresses both assembly complexity and motion constraints issues. - The collaboration between humans and robots in the assembly cell will only be practical if human safety can be ensured during the assembly tasks that require collaboration between humans and robots. The second objective of the dissertation is to evaluate different options for real-time monitoring of the state of human operator with respect to the robot and develop strategies for taking appropriate measures to ensure human safety when the planned move by the robot may compromise the safety of the human operator. In order to be competitive in the market, the developed solution will have to include considerations about cost without significantly compromising quality. - In the envisioned hybrid cell, we will be relying on human operators to bring the part into the cell. If the human operator makes an error in selecting the part or fails to place it correctly, the robot will be unable to correctly perform the task assigned to it. If the error goes undetected, it can lead to a defective product and inefficiencies in the cell operation. The reason for human error can be either confusion due to poor quality instructions or human operator not paying adequate attention to the instructions. In order to ensure smooth and error-free operation of the cell, we will need to monitor the state of the assembly operations in the cell. The third objective of the dissertation is to identify and track parts in the cell and automatically generate instructions for taking corrective actions if a human operator deviates from the selected plan. Potential corrective actions may involve re-planning if it is possible to continue assembly from the current state. Corrective actions may also involve issuing warning and generating instructions to undo the current task.
  • Thumbnail Image
    Item
    FAULT DETECTION AND PROGNOSTICS OF INSULATED GATE BIPOLAR TRANSISTOR (IGBT) USING A K-NEAREST NEIGHBOR CLASSIFICATION ALGORITHM
    (2013) Sutrisno, Edwin; Pecht, Michael; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Insulated Gate Bipolar Transistor (IGBT) is a power semiconductor device commonly used in medium to high power applications from household appliances, automotive, and renewable energy. Health assessment of IGBT under field use is of interest due to costly system downtime that may be associated with IGBT failures. Conventional reliability approaches were shown by experimental data to suffer from large uncertainties when predicting IGBT lifetimes, partly due to their inability to adapt to varying loading conditions and part-to-part differences. This study developed a data-driven prognostic method to individually assess IGBT health based on operating data obtained from run-to-failure experiments. IGBT health was classified into healthy and faulty using a K-Nearest Neighbor Centroid Distance classification algorithm. A feature weight optimization method was developed to determine the influence of each feature toward classifying IGBT's health states.
  • Thumbnail Image
    Item
    Methodology for Evaluating Reliability Growth Programs of Discrete Systems
    (2008-04-25) Hall, J. Brian; Mosleh, Ali; Ellner, Paul M.; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The term Reliability Growth (RG) refers to the elimination of design weaknesses inherent to intermediate prototypes of complex systems via failure mode discovery, analysis, and effective correction. A wealth of models have been developed over the years to plan, track, and project reliability improvements of developmental items whose test durations are continuous, as well as discrete. This research reveals capability gaps, and contributes new methods to the area of discrete RG projection. The purpose of this area of research is to quantify the reliability that could be achieved if failure modes observed during testing are corrected via a specified level of fix effectiveness. Fix effectiveness factors reduce initial probabilities (or rates) of occurrence of individual failure modes by a fractional amount, thereby increasing system reliability. The contributions of this research are as follows. New RG management metrics are prescribed for one-shot systems under two corrective action strategies. The first is when corrective actions are delayed until the end of the current test phase. The second is when they are applied to prototypes after associated failure modes are first discovered. These management metrics estimate: initial system reliability, projected reliability (i.e., reliability after failure mode mitigation), RG potential, the expected number of failure modes observed during test, the probability of discovering new failure modes, and the portion of system unreliability associated with repeat failure modes. These management metrics give practitioners the means to address model goodness-of-fit concerns, quantify programmatic risk, assess reliability maturity, and estimate the initial, projected, and upper achievable reliability of discrete systems throughout their development programs. Statistical procedures (i.e., classical and Bayesian) for point-estimation, confidence interval construction, and model goodness-of-fit testing are also developed. In particular, a new likelihood function and maximum likelihood procedure are derived to estimate model parameters. Limiting approximations of these parameters, as well as the management metrics, are also derived. The features of these new methods are illustrated by simple numerical example. Monte Carlo simulation is utilized to characterize model accuracy. This research is useful to program managers and practitioners working to assess the RG program and development effort of discrete systems.