Office of Undergraduate Research
Permanent URI for this communityhttp://hdl.handle.net/1903/20157
Emphasizing equitable and inclusive access to research opportunities, the University of Maryland's Office of Undergraduate Research (OUR) empowers undergraduates and faculty to engage and succeed in inquiry, creative activity, and scholarship. This collection includes materials shared by undergraduate researchers during OUR events. It also encompasses materials from Undergraduate Research Day 2020, Undergraduate Research Day 2021, and Undergraduate Research Day 2022, which were organized by the Maryland Center for Undergraduate Research.
Browse
5 results
Search Results
Item Understanding the Extracellular Matrix Structure of Lymph Nodes During Immune Reponse(2024) Patolia, Reina; Abbouchi, Yassmin; Ramirez, Ann; Maisel, KatharinaLymph nodes (LNs) are integral in the human immune system, as they facilitate the movement of lymphocytes to areas of the body experiencing immunological challenges. During inflammation, research has shown that LNs expand up to 10 times their initial volumetric size and go through major changes. Most importantly, it is known that the extracellular matrix (ECM) of the LN contributes to its structure in addition to cell activities such as proliferation and migration. With the ECM being critical in LN function, we hope to understand how it changes throughout the stages of inflammation. To do this, we are optimizing a procedure to image lymph node samples and quantify the ECM’s interstitial spacing through the inflammatory response. While conducting this project, mice are injected with lipopolysaccharide (the cellular wall component of gram-negative bacteria), and LNs are collected during the 14-day inflammatory period. The tissue is sliced and stained using immunofluorescence. The images acquired from a confocal microscope are then processed using Fiji software and put into a gap analysis MATLAB code, provided by scientists at the Francis Crick Institute. After converting the interstitial space and ECM to zeros and ones (binary), the code quantifies the empty space and structures within the ECM. This information allows us to see how interstitial spacing within the ECM during inflammation correlates to the LNs’ mechanical properties. This insight into the inner workings of LNs will provide more details about their physiology and how changes in architecture, due to disease and age, can ultimately change LN immune function.Item Assessing Porcine Gastric and Trachea Mucin Antimicrobial Activity Against Pseudomonas Aeruginosa(2024) Sokol, Zoe; Yang, Sydney; Duncan, GreggMucus is present throughout the human body, lining all wet epithelia, making it a native, familiar material to the innate immune system. The biocompatibility of mucus opens the possibility for therapeutic applications. Existing research has shown that exposure to mucus triggers the downregulation of virulence genes in some bacteria species and rapidly disintegrates biofilms. The aim of this project is to test the innate antimicrobial activity of porcine gastric mucin (PGM) and porcine trachea mucin (PTM) against Pseudomonas aeruginosa. We examined the antimicrobial activity of mucins by quantifying bacteria growth and viability at numerous time points after mucin treatment. To test this hypothesis, PAO1 cultures were grown in LB broth overnight. Mucin was added to the planktonic PAO1 cultures at various concentrations, 8%, 4%, 2%, 1%, and 0.5% w/v, with each concentration tested in triplicates. At the 3 hr, 6 hr, and 24 hr timepoints after mucin addition, samples were taken from each culture, diluted, and spot-plated. The plates were grown overnight and counted the next day to calculate the colony-forming units. Preliminary results suggest that increasing mucin concentration correlates with decreased bacterial growth, as hypothesized. Additionally, PGM possibly shows a greater degree of antimicrobial effect than PTM. This research has a great potential impact. Pseudomonas aeruginosa is an opportunistic pathogen often developing antibiotic resistance making it extremely difficult to treat and a high priority for novel treatment development. Therefore, a novel treatment method against P. aeruginosa can have broad implications and improve bacterial infection treatments.Item Bacteria-mucus interactions & their role in chronic lung infections(2020) Curry, Keyona; Joyer, Katherine; Duncan, GreggItem Improving Non-Contact Tonometry through Advanced Applanation Techniques and Measurement of Corneal Deformation(2020) Muessig, James; Ackman, Moshe; Cho, Lauren; Do, Kun; Green, Aaron; Klueter, Sam; Krakovsky, Eliana; Locraft, Ross; Wu, Hongyi; Lin, Jonathan; Scarcelli, GiulianoGlaucoma, a disease characterized by increased intraocular pressure (IOP) in the eyes, is the leading cause of preventable blindness worldwide. Accurate measurement of IOP is essential to early diagnosis of glaucoma in order to begin treatment and prevent long-term vision loss. Currently, non-contact tonometry, known as an “air-puff test”, is the most common diagnostic method despite its inaccessibility, discomfort, high cost, and reliance on an expert to operate. In order to improve upon this method, we designed an accurate and less invasive measurement system utilizing a novel depth-mapping neural network and a microcontroller-driven valve system. We applanated eyes with a variable-intensity air puff while imaging the deformation with a single camera. Our neural network then processed the image data and generated a three-dimensional deformation map. We compared our results to accepted tonometry measurements in order to validate the accuracy of our system as an alternative diagnostic device. With a lower pressure puff and simplified imaging setup, we were able to accurately measure IOP, improving existing diagnostic techniques in optometry.Item Gradation of Porcine Bladder ECM in Hydrogels for Chronic Wound Treatment(2020) Allbritton-King, Jules; Kimicata, Megan; Fisher, JohnChronic, nonhealing wounds affect about 6.5 million individuals in the U.S., and often present as comorbidities of other prevalent conditions such as obesity and diabetes. Chronic wounds are characterized by a recurring inflammatory state without progression to the proliferation and remodeling stages of wound healing. Around $25 billion is spent annually on treatment of chronic wounds; however most traditional wound care approaches do not effectively encourage the physiological healing process. One emerging treatment option is extracellular matrix (ECM)-based wound dressings, which are composed of a network of proteins and other macromolecules that support and anchor cells within tissue. These dressings are typically composed of decellularized tissue derived from animal donors and provide a protein scaffold that mimics dermal ECM by facilitating cell adhesion. Most commercially available ECM-based dressings are dry, uniform sheets of ECM that provide a structural scaffold for cellular growth, but do not provide a physiologically relevant moisture balance or encourage cellular infiltration into the dressing as the wound heals. However, fibroblasts, which play a major role in wound healing, have been shown to migrate to regions of denser ECM concentrations, where they exhibit enhanced metabolic activity and proliferation. A UBM-based hydrogel will serve as an alternative wound dressing that will mitigate the issues with current ECM-based products. A hydrogel dressing offers a more physiologically relevant moisture balance to the site of the wound, while integrated structural cues will encourage fibroblast infiltration. Ultimately, this approach will increase the rate at which ulcers heal and prevent further deterioration of the wound site, in turn lessening the physical and financial burden on patients.