Office of Undergraduate Research

Permanent URI for this communityhttp://hdl.handle.net/1903/20157

Emphasizing equitable and inclusive access to research opportunities, the University of Maryland's Office of Undergraduate Research (OUR) empowers undergraduates and faculty to engage and succeed in inquiry, creative activity, and scholarship. This collection includes materials shared by undergraduate researchers during OUR events. It also encompasses materials from Undergraduate Research Day 2020, Undergraduate Research Day 2021, and Undergraduate Research Day 2022, which were organized by the Maryland Center for Undergraduate Research.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Biomarker Research Applications in Alzheimer's Disease
    (2021-05) Cieslak, Zofia; Acha, Beatrice; Hemani, Danny; Kubli, Anjali; Lee, So Min; Mgboji, Rejoyce; Nallani, Madhulika C.; Park, Michael J.; Samson, Mahalet; Wu, Benjamin; Smith, J. Carson; Smith, J. Carson
    Alzheimer’s Disease (AD) affects millions of older individuals and is a growing problem without an accessible diagnosis method, drug target for treatment, or model of the longitudinal progression of the disease. The project, led by University of Maryland Gemstone Team BRAIN, aims to determine how changes in memory, visuospatial ability, the plasma amyloid β 42/40 ratio, and the total hippocampal volume can be used to accurately predict the onset and progression of AD. Using the Alzheimer’s Disease Neuroimaging Initiative, a database that compiles data from nationwide studies, we analyze cognitive function (memory and visuospatial ability), plasma biomarkers (amyloid β 42/40 ratio), and brain imaging (hippocampal volume). Data analysis consists of using programs such as Python and JASP to analyze data from the ADNI database, and finding significant relationships between variables through statistical analysis. Our results suggest that the impact of the e4 allele on memory and visuospatial ability over time may be strong in people who show early cognitive decline, independent of age, sex and education, and that hippocampal volume loss is greater in people who carry the e4 allele independent of covariates. Furthermore, it is unclear if plasma biomarkers reflect brain pathology. Team BRAIN’s future research goals include addressing disparities in AD development among different demographic and socioeconomic groups, using our findings to work towards a novel and cost-effective approach to diagnosing and treating AD to eradicate boundaries in the access to care, applying machine learning to propose a model of prediction and longitudinal progression, and expanding the variable set to include more biomarkers.